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This course is meant to be an overview, from one particular angle, of the homotopical semantics
of type theory, and in particular the relationship between models of certain type theories and
(00, 1)-categories, which are objects one works with in homotopy theory. This relationship is one of
the key motivations for homotopy type theory: it means that we can use type theory to “work inside
of” and prove things about individual (0o, 1)-categories (such as the (oo, 1)-category of topological
spaces), and it means we can learn about what is provable in type theory by studying these models.

We are going to talk about multiple different type theories, all of which will be fragments or
extensions of Martin-Lof’s intensional type theory [Mar75]. My hope with this course is to say
something precise about how models of these theories correspond to different classes of (oo, 1)-
categories. Even getting to precise theorem statements takes time, and proving the theorems is
of course even harder! Indeed, this is still an area of active research, and we shall see that for
fully-featured type theories, only partial results are known.

It is not too hard to get an intuitive feeling that there is a connection between type theory and
homotopy theory. The basis for the connection is Martin-Lof’s intensional identity type with the J
eliminator, specified by the following rules:

ForMATION INTRODUCTION
Mo, M1 cA M:A
Id (Mo, My) type reflps : 1d o (M, M)

ELIMINATION (J)

ao, a1+ A,p :lda(ao, a1) - C(ag, a1, p) type
a:AF R(a): C(a,a,refl,) Mo, M; - A P :1d g (Mo, M)

J(C,R, M()7M1,P) . C(Mo,MhP)

COMPUTATION
ag,ay : A,p:lda(ag,a1) - Clag, a1, p) type a:AF R(a): C(a,a,refly,) M:A

J(C, R, M, M,reflys) = R(M) : C(M, M, refly)

The propositions-as-types philosophy puts identity types on the same level as “data’ types like
the natural numbers, and the elimination rule does not preclude a proof-relevant interpretation
of identity types, where identity might be a structure on two elements rather than a property.
Homotopy theory deals exactly with situations where “equality” is treated as structure, so we should
expect to be able to analyze models of these rules using homotopy-theoretic tools.

However, coming up with the right statement to formalize this connection is not so easy. In
this first lecture, we will not talk about homotopy theory at all, but rather review the relationship
between models of extensional type theory and I-categories. This will help us to understand what
we might want to prove in the intensional case.



1 Type theory

Let us recall the basic ingredients of type theory in a bit more detail, so that we can decide what
we mean by a model of type theory. The statements we make in type theory are called judgments,
and more specifically we make type and term judgments: we can state the existence of a type or
the existence of a term of a given type.

A type M:A
We also speak of equalities between the subjects of these judgments:
A():Al type MOZMllA

We moreover make hypothetical judgments, relative to a context T' of assumptions, which we write
like so:

'k A type 'EM:A
Fl—AozAltype F"MOZMllA

A type theory is then made up of rules that we apply to derive individual judgments.
In Martin-Lof’s original presentations of type theory, a context is explicitly a list of hypotheses,
each of which introduces a term variable of some type:

ap : AQ,(Ll : Al(a0)7a2 : Ag(amal), ey Qp An(a07. .. ,an,l)

However, it is often more convenient to include a separate judgment form for contexts. In this way
of doing things, we can still build up contexts by adding term hypotheses:

T ctx ' A type
- ctx I''A ctx

but we write the rules of our theory without assuming that every context has been built up using
these rules. We can avoid giving our hypotheses names, as in the notation “I".A” I used above, by
introducing a judgment for explicit substitutions TV - : T [ACCLI1; Mar92] that act on types and
terms:

I'k~:T T'F A type I"t~:T r-M:A
I'" = A[] type I My Aly]

Access to variables from the context is provided by a variable term q4, whose typing rule makes
use of the projection or weakening substitution p:

' A type ' A type
F.A}—pA:F F.Al—qA:A[pA]

The term q4 is the variable corresponding to the rightmost hypothesis in the context. To access
other variables, we use p and q together, for example I''A.B - qa[pg] : Alpallps]- We build up
substitutions in the same way that we build up contexts, by iterated extension:

I'~:T ' A type ' M : Aly
I'+-~.M:T.A

Although we would be able to get type theory off the ground without doing so, we usually
include identity and composition substitutions, which make the contexts and substitutions between



them into a category(!):

[ ctx "Ey:D TVEA T I'Fy:T I'by:T
hidr: T I"Fyoq':T [Mtidpoy=~:T I'Fyoidp =~: T

I"F(yoy)oy" =vo(y' 0a"):T
We also have equations for the interaction of substitution extension with projection and the variable:

IMk~:T ' A type "'+ M : Aly I'k~:T '+ A type ' M: Aly]
I'Fpao(y.M)=~:T I'Fqa[y.M] = M : Ay]

Exercise 1.1. Pick your favorite type former (e.g., 3, II, or the Id-types from above) and write its
rules using explicit substitutions instead of named variables.

For a modern introduction to type theory in this style, see Angiuli and Gratzer’s textbook-in-
progress [AG25, §2.3].

Remark 1.2. In this course, we are not going to work formally with syntax in the traditional
sense. We will define formally what a model of type theory (with, e.g., ¥ and Id types) is, and
we think of the sequents and inference rules above as informal notation for objects we have and
constructions we can perform in any model. Partly for this reason, I won’t shy from sacrificing
precision for readability when I write rules; if you want to be sure of what I really mean, look at
the definition of model.

A definition of model and a formally defined syntax can be related by an initiality theorem, as
for example in Streicher [Str91, Chapter 4], De Boer [Boe20], or Uemura [Uem21, Chapter 5], but
we will stay away from these matters in this course.

2 Models of type theory

We will use Awodey’s natural model [Awo16] definition of model of type theory. Natural models are
interchangeable with Cartmell’s categories with attributes [Car78, §3.2; Pit01, §6.3] and Dybjer’s
categories with families [Dyb96]; the natural model presentation has certain advantages for the
categorical study of models. For a recent summary of the relationships between the many different
definitions of “model of type theory” in the literature, see Ahrens, Lumsdaine, and North [ALN24].

Notation 2.1. I write PSh(C) for the category of presheaves on a category €, and &: € — PSh(C)
for the Yoneda embedding, which sends an object I" € € to the representable presheaf &I' := C(—,T").

Remark 2.2. We will use presheaf categories and the Yoneda embedding in many contexts in this
course. If you need to familiarize yourself, Awodey [Awo06, Chapter 8 and Example 9.22] and Mac
Lane and Moerdijk [MM94, Chapter I] cover many basic properties.

Definition 2.3. In a presheaf category PSh(C), a morphism p: K — J is (locally) representable
when for every I' € € and A: &' — J, there is an object I".A € € and morphisms p4: "A - T
and ¢4: &(I'.A) — K fitting into a pullback square

Definition 2.4. A natural model of type theory (C, ) is a category € with a terminal object 1 € C,
two presheaves Ty, Tm € PSh(C), and a representable map 7: Tm — Ty between them.



We understand € as the semantic category of contexts and substitutions. For every object I' € C,
we have a set Ty of semantic types in context I" and a set Tmr of semantic terms in context;
the map #r: Ty — Tmr sends each term to its type. For each v: TV — T', we get a function
Ty, : Typ — Typ, which we think of as mapping I' - A type to I'' = A[y] type and a function
Tm, : Tmp — Tmp which we think of as mapping I'F M : A to IV = M[y] : A[y].

The Yoneda lemma identifies elements A € Ty with presheaf morphisms A: &I' — Ty, which
lets us conveniently think of a type in context I' as a “function” from I" into the collection Ty of
types; the same goes for Tmr and &I' — Tm. The condition that 7 is representable formalizes
context extension: for every context I' € € and I'-indexed family of types A: I' — Ty, we get a new
context I'.A € C:

This context has a projection substitution down to I' (p4), and there is a function from I'.A to
terms q4: &(I'.A) — Tm that projects the hypothesized element of A. The fact that this square is
a pullback means that a substitution into I'. A is given by a pair of a substitution into I' and a term
of type A.

2.1 Type formers

A natural model is a model of type theory without any type formers. To describe models of type
theory with type formers, we ask for additional structure on m: Tm — Ty. Often there is a nice
categorical description of this structure. An simple example is extensional identity types, i.e.,
identity types with the reflection rule (see §3):

REFLECTION
P: |dA(M07M1)

MOZMliA

Definition 2.5. An extensional identity type structure on a natural model (€, 7) consists of
morphisms Id: Tm X1y, Tm — Ty and refl: Tm — Tm such that we have a pullback square

TmLﬂ>Tm

<idTm7 1dTm>J{ N J/ﬂ-
Tm X1y Tm T) Ty.
However, we can also translate sequents and inference rules into the language of presheaves in a

completely mechanical way. Say, for example, that we want to define ¥ type structure. We can
represent the hypotheses of its formation rule by a presheaf Fam € PSh(C):

Famp = {(A,B) | A€ Typ,B € Typ 4} Fam., (A, B) :== (Ay, B{ypa,q4)).

Then we can ask our natural model to interpret the ¥ formation rule by asking for a morphism
Y: Fam — Ty. For the introduction rule, we can similarly define a presheaf Pair € PSh(C) with a
projection 7F®": Pair — Fam:
Pairr := {(4, B, M,N) | A€ Ty, B € Typ 4, M € n*(A), N € np ' (B(idr, M))}
7P (A B, M,N) = (A, B)



and ask for our model to interpret the introduction rule by asking for a morphism

Exercise 2.6. Formulate the remaining rules for ¥ types in the language of natural models. Do X
types have a characterization analogous to Definition 2.57

3 [Extensional type theory and category theory

In Martin-Lof’s extensional type theory (ETT) [Mar82], identity types are trivialized by adding
the reflection rule, which says that any identified terms are judgmentally equal:

REFLECTION

P:ldA(Mo,Ml)
MO = M1 cA

Although this is not immediately obvious, the reflection rule forces equality to be proof-irrelevant:

Exercise 3.1. Given the formation (Id) and introduction (refl) rules for identity types together
with the reflection rule, show that the J rule is interderivable with the rule

UNIQUENESS
Mo, M1 c A

P = refIMO : |dA(M0,M1)

There is a correspondence between “democratic” (see below) models of ETT with X, II, and
Id and locally cartesian closed categories (LCCC’s). Seely [See84] made the first attempt at such
a result, but there is a problem with his construction of a model of type theory from an LCCC.
Curien [Cur93] and Hofmann [Hof95] gave two different corrected versions of that construction (see
also [CGH14]). Using Hofmann’s construction, Clairambault and Dybjer [CD14] proved a correct
version of the correspondence: a biequivalence between a 2-category of democratic models of ETT
and the established 2-category of LCCC’s. Clairambault and Dybjer also observe that if we throw
away Il types, we get a correspondence between models of ETT with ¥ and Id and categories with
finite limits.

3.1 Democratic models

From our definition of models in §2, we see right away that every model of type theory (C, )
contains a category: the category of contexts €. At the same time, it seems a priori that (€, )
contains more data, including multiple other categories. For every context I' € C, there is a
category Ty whose objects are types A: &I' — Ty and whose morphisms A — B are substitutions
I'"A — T'.B over I (or equivalently terms of type Bp4 in context I".A). In particular, there is a
category Ty, of closed types. There is a fully faithful functor 1.(—): Ty, — C sending each closed
type A to the context 1.A, but this functor may not have an inverse.

When we relate models to categories, therefore, we restrict our attention to models where every
context does arise from iterated context extension.

Definition 3.2. For a natural model (C,7: Tm — Ty), the class of contextual objects in € is the
least replete class containing

(a) the terminal object 1 € C,



(b) for every contextual object I' € € and A: &I" — Ty, the object I'.A € C.
A natural model is democratic when every object of C is contextual.

For a natural model with ¥ types, every contextual object is isomorphic to a context consisting
of a single closed type, since 1.A.B = 1.5(A, B). This makes the functor 1.(—): Ty, — C into an
equivalence.

As for the categories Ty for other I'; we will see that in democratic models they are essentially
determined by C.

3.2 From models to finite limit categories

We now show that for a democratic model (€, 7) with ¥ and extensional Id types, the category of
contexts € has finite limits. Following Clairambault and Dybjer, we prove this with the help of the
following lemma:

Lemma 3.3. For every v: IV — T, there is a type A: &I' — Ty with an isomorphism

r—Y% .14
v A
r

in C.

Proof. Because (€, 7) is democratic, we have closed types B, B’ € Ty, such that I' = 1.B and
IV = 1.B’. Since a substitution between closed types consists of a term, it will suffice to show the
statement for the special case where v = (pps,t): 1.B’ — 1.B for some term 1.B’ ¢ : B. Let us
work informally using named variables, so b’ : B’ - ¢(b’) : B. We define a type b : B+ A(b) type
using ¥ and Id by

A®D) = .5 [dp(t(1), D).

In words, A(b) is the type of elements of B’ that ¢ sends to b. There is moreover an isomorphism of
contexts # given by the following mappings:

(0 :B') —=—— (b: B,c: A(b))

O (), (¥, refl))

v 1 (b, (V' p)
Thus we have:
1.B' 9 1.B.A
<ppm ‘A
1.B

as desired. Note that the fact that these mappings cancel up to judgmental equality and therefore
give an isomorphism of contexts depends crucially on equality reflection. O

Lemma 3.3 is a kind of relative democracy: it shows that the projection Ty — €/T from a
type over I' to a substitution into I' is an equivalence.

Theorem 3.4. If (C,7) is a natural model with ¥ and Id types, then C has finite limits.



Proof. Tt suffices to check that C has a terminal object and pullbacks. The former is true by
definition of natural model. For the latter, let a diagram

1"/
Ik
A——T

in € be given. Given that pullbacks are isomorphism invariant, it suffices to find a pullback for the
isomorphic diagram

T.A
2
A——T

where A is obtained from Lemma 3.3. In this case, we can construct a pullback by applying the
substitution ¢ to the type A. In the language of natural models, this means the following. The
universal property of the pullback defining I'.A gives us a unique dashed map in the diagram

qAc

J:(AAO') ***** > J:(F.A) T Tm

wl e ]
A ——— &T ——— Ty.

Since both the right square and the outer rectangle are pullbacks, it follows from the pullback
pasting lemma that the left square is also a pullback, and this is the pullback we were looking
for. O

When (C, ) has II types, we can use Lemma 3.3 in a similar fashion to prove that € is locally
cartesian closed. Recall that a category & with finite limits is locally cartesian closed when all
of its slice categories have exponentials. An equivalent condition is that for every f: X’ — X in
&, the induced functor f*: £/X — &/X’ that pulls back a morphism along f has a right adjoint
fa: €/ X" — €/X (called “pushforward”).

In the case of (C,7), if we are given v: I — ' and o: A — I'" and want to define .o, we first
replace the diagram

by an isomorphic diagram
IA.B

ps |

ra——r
pA

by applying Lemma 3.3 twice; again, pushforwards are defined up to isomorphism, so it suffices to
handle this case. We can show that the projection for the II type

I.AB I.II(A, B)
PBJ iPn(A,B)
ra—————rT
pa



has the universal property of (pa)«(pp).
In the next lecture, we will discuss the opposite direction: going from categories with finite
limits to models of type theory with ¥ and extensional Id.
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