Unifying Cubical Models of Univalent Type Theory

Evan Cavallo
Carnegie Mellon University

Anders Mörtberg Stockholm University

Andrew W Swan University of Amsterdam

■ Dependent type theory

$$\Gamma \vdash A \text{ type} \qquad \Gamma \vdash M : A$$

$$\Gamma \vdash A = B \text{ type} \quad \Gamma \vdash M = N : A$$

□ Dependent type theory

$$\Gamma \vdash A \text{ type} \qquad \Gamma \vdash M : A$$
 $\Gamma \vdash A = B \text{ type} \quad \Gamma \vdash M = N : A$

$\Gamma \vdash (a:A) \to B \text{ type}$	function/implication/∀
$\Gamma \vdash (a:A) \times B \text{ type}$	product/3
$\Gamma \vdash \mathbb{N} \text{ type}$	inductive types
$\Gamma \vdash \mathrm{Id}_A(M,N)$ type	equality
$\Gamma \vdash \mathcal{U} \text{ type}$	universe(s) of types

□ Dependent type theory

$$\Gamma \vdash A \text{ type} \qquad \Gamma \vdash M : A$$
 $\Gamma \vdash A = B \text{ type} \quad \Gamma \vdash M = N : A$

$\Gamma \vdash (a:A) \to B \text{ type}$	function/implication/∀
$\Gamma \vdash (a:A) \times B \text{ type}$	product/∃
$\Gamma \vdash \mathbb{N} \text{ type}$	inductive types
$\Gamma \vdash \mathrm{Id}_A(M,N)$ type	equality
$\Gamma \vdash \mathcal{U} \text{ type}$	universe(s) of types

e.g.
$$\cdot \vdash M : (n : \mathbb{N}) \to (m : \mathbb{N}) \times \mathrm{Id}_{\mathbb{N}}(m, n)$$

 \square Identity $\mathrm{Id}_A(a,b)$

$$\frac{a:A}{\operatorname{refl}_A a:\operatorname{Id}_A(a,a)} + \frac{a:A \vdash d:P(a,a,\operatorname{refl}_A a)}{\operatorname{elim}(a.d,a_0,a_1,t):P(a_0,a_1,t)}$$

- ♦ Least reflexive relation (⇒ symmetric, transitive, etc.)
- "Underdetermined"

$$\operatorname{Id}_{(a:A)\to B}(f,g) \stackrel{?}{\simeq} (a:A) \to \operatorname{Id}_{B}(fa,ga) \left[\operatorname{Id}_{\mathcal{U}} A \ B \simeq ? \right]$$

□ Univalence Axiom (Voevodsky)

$$\mathrm{Id}_{\mathcal{U}}(A,B)\simeq (A\simeq B)$$

- \blacksquare Equivalence $A \simeq B$
 - lacktriangledown map f:A o B with a left and right inverse

$$(f, s, \beta, r, \alpha) : A \simeq B$$

Identities are not unique

- More: add higher inductive types
 - Quotients for proof-relevant identity
 - Language for synthetic homotopy theory

Models of Univalent Type Theory

- Simplicial set model (Kapulkin & Lumsdaine '12/'18, after Voevodsky)
 - Classical setting for homotopy theory
 - Essentially non-constructive (Bezem, Coquand, & Parmann '15)
- Cubical set model (Bezem, Coquand, & Huber '13)
 - First constructive model of univalence
 - Problems with higher inductive types resolved in Cohen, Coquand, Huber, & Mörtberg '15 and Angiuli, Favonia, & Harper '18 models

Cubical Set Models

- Interpret contexts as cubical sets
 - family of sets indexed by interval variable contexts

$$\Gamma \operatorname{ctx} \quad \rightsquigarrow \quad \llbracket \Gamma \rrbracket (i_1 : \mathbb{I}, \dots, i_n : \mathbb{I}) \text{ for each } n$$

$$\text{``maps } [0, 1]^n \to \Gamma$$

$$\llbracket \Gamma \rrbracket (\cdot) = \left\{ \begin{array}{c} \mathbf{o} \\ \end{array} \right\} \qquad \llbracket \Gamma \rrbracket (i : \mathbb{I}) = \left\{ \begin{array}{c} i \\ \hline \\ \end{array} \right\} \qquad \qquad \\ \llbracket \Gamma \rrbracket (i : \mathbb{I}, j : \mathbb{I}) = \left\{ \begin{array}{c} i \\ \hline \\ \end{array} \right\} \qquad \qquad \\ \biggr\}$$

Cubical Set Models

- - family of sets indexed by interval variable contexts

$$\Gamma \operatorname{ctx} \quad \rightsquigarrow \quad \llbracket \Gamma \rrbracket (i_1 : \mathbb{I}, \dots, i_n : \mathbb{I}) \text{ for each } n$$

$$\text{``maps } [0, 1]^n \to \Gamma \text{''}$$

• for every $f:(i_1:\mathbb{I},\ldots,i_n:\mathbb{I})\to (j_1:\mathbb{I},\ldots,j_m:\mathbb{I})$ in some fixed class of interval maps,

$$\llbracket \Gamma \rrbracket (f) : \llbracket \Gamma \rrbracket (j_1 : \mathbb{I}, \dots, j_m : \mathbb{I}) \to \llbracket \Gamma \rrbracket (i_1 : \mathbb{I}, \dots, i_n : \mathbb{I})$$

$$\llbracket \Gamma \rrbracket (0/j) : \left\{ \begin{array}{c} i \\ \hline \end{array} \right\} \longrightarrow \left\{ \begin{array}{c} i \\ \hline \end{array} \right\}$$

Cubical Set Models

- - family of sets indexed by interval variable contexts

$$\Gamma \operatorname{ctx} \longrightarrow \llbracket \Gamma \rrbracket (i_1 : \mathbb{I}, \dots, i_n : \mathbb{I}) \text{ for each } n$$

$$\text{"maps } [0, 1]^n \to \Gamma \text{"}$$

• for every $f:(i_1:\mathbb{I},\ldots,i_n:\mathbb{I})\to (j_1:\mathbb{I},\ldots,j_m:\mathbb{I})$ in some fixed class of interval maps,

$$\llbracket \Gamma \rrbracket (f) : \llbracket \Gamma \rrbracket (j_1 : \mathbb{I}, \dots, j_m : \mathbb{I}) \to \llbracket \Gamma \rrbracket (i_1 : \mathbb{I}, \dots, i_n : \mathbb{I})$$

■ Interpret types as fibrations

 $\Gamma \vdash A \text{ type} \leadsto \text{ family of cubical sets indexed by } \llbracket \Gamma \rrbracket$ that "respect paths in $\llbracket \Gamma \rrbracket$ "

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

"if
$$\gamma_0$$
 — $\gamma_1 \in \llbracket \Gamma \rrbracket$ then $\llbracket A \rrbracket (\gamma_0) \simeq \llbracket A \rrbracket (\gamma_1)$ "

"if
$$\gamma_0$$
 — $\gamma_1 \in \llbracket \Gamma \rrbracket$ then $\llbracket A \rrbracket (\gamma_0) \simeq \llbracket A \rrbracket (\gamma_1)$ "

"if
$$\gamma_0$$
 — $\gamma_1 \in \llbracket \Gamma \rrbracket$ then $\llbracket A \rrbracket (\gamma_0) \simeq \llbracket A \rrbracket (\gamma_1)$ "

□ Part 1 (coercion):

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

 \square Part 2 (composition): a cube in A can be adjusted

Part 1 (coercion):

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

 \blacksquare Part 2 (composition): a cube in A can be adjusted

□ Part 1 (coercion):

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

 \blacksquare Part 2 (composition): a cube in A can be adjusted

□ Part 1 (coercion):

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

 \blacksquare Part 2 (composition): a cube in A can be adjusted

□ Part 1 (coercion):

"if
$$\gamma_0$$
 — $\gamma_1 \in [\![\Gamma]\!]$ then $[\![A]\!](\gamma_0) \simeq [\![A]\!](\gamma_1)$ "

 \blacksquare Part 2 (composition): a cube in A can be adjusted

"if
$$\gamma_0$$
 — $\gamma_1 \in \llbracket \Gamma \rrbracket$ then $\llbracket A \rrbracket (\gamma_0) \simeq \llbracket A \rrbracket (\gamma_1)$ "

- \blacksquare Part 2 (composition): a cube in A can be adjusted
- A fibration is a family supporting these operations

Two approaches

Result: fibrations closed under type formers

Two approaches

Angiuli, Favonia, & Harper '18

$$x,0,1\in\mathbb{I}$$
 only variables and faces in \mathbb{I}

composition adjusts any part

Result: fibrations closed under type formers

Two approaches

- Rely on operations on dimensions (□,□,¬) to show closure under type formers
- Does not apply in AFH cubical sets

■ AFH

- Need stronger composition and coercion to show closure under type formers
- Applies in CCHM cubical sets, but gives inequivalent definition of fibration

Is there a unifying construction that generalizes these?

Q: Where do we use the stronger composition in AFH?

Q: Where do we use the stronger composition in AFH?

Q: Where do we use the stronger composition in AFH?

Q: Where do we use the stronger composition in AFH?

Q: Where do we use the stronger composition in AFH?

A: Fixing coercion output that doesn't quite agree with input

IDEA (CMS):

Weaken the condition on coercion ouput

- Fibrations are closed under type formers
- Fibrations participate in a model structure

 \square Parameterized by category \mathcal{C} with \mathbb{I} and Φ (+ axioms)

CCHM = CMS (De Morgan cubical sets ,
$$\blacksquare$$
 , \blacksquare) (\neg , \Box , \Box + coercion $0 \to 1 \Rightarrow$ weak coercion)

 \blacksquare Also new models, e.g. cartesian w/ only faces in Φ

- Formulated following Orton & Pitts '16 (for CCHM), Angiuli, Brunerie, Coquand, Favonia, Harper, & Licata '18 (for AFH)
 - lacktriangle assume $\mathcal C$ interprets ordinary type theory
 - describe axioms and construction in internal language
 - enables straightforward formalization (ours in Agda)

- setting for homotopy theory
- following Sattler '17 (for CCHM)
- lacktriangle use Swan '18 to translate coercion r
 ightarrow s

$$(C,W,F) \begin{tabular}{l} C (cofibrations): generated by Φ \\ W (weak equivalences): equivalences \\ F (fibrations): fibrations \\ \end{tabular}$$

lacktriangle Our (C, W, F) has F maximal such that families in F have coercion $0 \rightarrow r$

Future work

- - Substructural: no diagonal maps between cubes

$$(k/i,j):(k:\mathbb{I})\to(i:\mathbb{I},j:\mathbb{I})$$

- Definitions of fibration structure for types rely on the absence of diagonals
- How do cubical models relate to other models?