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THIS TALK:

What is internal parametricity,

and how does it relate to

higher-dimensional type theory?
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Parametric polymorphism, intui�vely

Parametric func�ons are “uniform” in type variables:

Compare with “ad-hoc” polymorphism:
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Reynolds’ abstrac�on theorem (1983)

DEF: A family of (set-theore�c) func�ons is 

parametric when it preserves all rela�ons. e.g.,

Abstrac�on theorem: the denota�on of any term in 

simply-typed λ-calculus (with ×, bool) is parametric.  
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Reynolds’ abstrac�on theorem (1983)

Key idea: λ-calculus has a rela�onal interpreta�on.

Abstrac�on theorem extends interpreta�on to terms
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An interlude: cubical type theory

category of dimension contexts could be:

faces, degeneracies, and permuta�ons [BCH]

+ diagonals [AFH, ABCFHL]

+ connec�ons [CCHM]

respect for equality ensured by Kan opera�ons

univalence via G / Glue / V types
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Interlude: cubical type theory

Can we do the same for rela�ons?
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Internal Parametricity (Bernardy et al)

Context of bridge variables (colors)

Faces, degeneracies, and permuta�ons [BCH]

Faces:

Degeneracies:

Permuta�ons:
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Bridge types

etc.
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Bridges in func�on types

In cartesian cubical type theories:

In BCH, this violates freshness requirements!

Rela�onal interpreta�on of func�on types:

equivalent in the presence of J
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Bridges in func�on types

Forward:

Backward:Backward:

“case analysis for dimension terms”
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Bridges in the universe (“rela�vity”)

Want:

Forward:

Backward:

BCH G-types for rela�ons
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Want:

Bridges in the universe (“rela�vity”)

Bernardy, Coquand, & Moulin: add equali�es

Validated by interpreta�on in refined presheaves

Alterna�ve: use univalence?
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Parametric cubical type theory (C & Harper)

Structural variables for paths,

substructural variables for bridges

Extend Kan opera�ons to make Bridge types Kan

w/ computa�onal seman�cs
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Parametric cubical type theory (C & Harper)

(and the other inverse condi�on)



HoTTEST 2019 21

Examples: Church booleans

What can we say about                                                        ?



HoTTEST 2019 21

Examples: Church booleans

What can we say about                                                        ?

Given                                    define a rela�on.  



HoTTEST 2019 21

Examples: Church booleans

What can we say about                                                        ?

Given                                    define a rela�on.  

Apply     at the Gel type for     in a fresh    .



HoTTEST 2019 21

Examples: Church booleans

What can we say about                                                        ?

Given                                    define a rela�on.  

Apply     at the Gel type for     in a fresh    .



HoTTEST 2019 21

Examples: Church booleans

What can we say about                                                        ?

Given                                    define a rela�on.  

Apply     at the Gel type for     in a fresh    .

Extract a witness.
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Examples: actual booleans

What are the bridges in         ?

Define the Gel type corresponding to paths in         .

Map from         to      by case analysisMap from         to      by case analysis

Prove this is an equivalence! (iterated parametricity)
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Examples: bridge-discrete types

We always have a map from (homogeneous) paths to 

bridges

    is bridge-discrete when this is an equivalence

Plays the role of the iden�ty extension lemma

e.g., any func�on from      to a bridge-discrete type is 

constant

The sub-universe of bridge-discrete types is closed 

under all type formers except    , including

 THM:               is rela�vis�c
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Examples: excluded middle

Consider the weak excluded middle:

Any func�on                     must be constant,

because          is bridge-discrete. 

Thus,                         .  

Corollary:                        , where

(see also: Booij, Escardó, Lumsdaine, & Shulman,

  Parametricity, automorphisms of the universe, and excluded middle)
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Examples: suspension

What are the terms                                                    ?

Completely determined by                                      .

Key Lemma:

(case of graph lemma in ordinary parametricity)
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Future work

Connec�on to ordinary cubical type theory

Seman�c: for                     in cubical type theory 

without func�on types, a proof with bridges 

gives an element in cubical sets, +??

-

- Syntac�c?

Proving algebraic proper�es of HITs

?

e.g., what are the terms of type 

conjecture: must be constant or iden�ty

Use to prove pentagon, hexagon, etc


