The algebraic small object argument as a saturation

Evan Cavallo

University of Gothenburg and Chalmers University of Technology

joint work with Christian Sattler

Story

- \otimes Writing up argument that many cubical-style model structures don't present spaces...
- \otimes Funny but central lemma:

$$A \stackrel{\sim}{\longrightarrow} B \longrightarrow A^{\square^n/\sigma} \stackrel{\sim}{\longmapsto} B^{\square^n/\sigma}$$

for well-chosen n and σ , where \rightleftharpoons = trivial cofibrations

Story

- ⊗ Writing up argument that many cubical-style model structures don't present spaces...
- ⊗ Funny but central lemma:

$$A \stackrel{\sim}{\longrightarrow} B \implies A^{\square^n/\sigma} \stackrel{\sim}{\longmapsto} B^{\square^n/\sigma}$$

for well-chosen *n* and σ , where $\stackrel{\sim}{\mapsto}$ = trivial cofibrations

- \otimes Usual strategy:
 - \oslash Check for generating $\stackrel{\sim}{\mapsto}$ (\approx open box inclusions)
 - \oslash Extend to all $\stackrel{\sim}{\mapsto}$ by one of two routes:
 - \odot If $(-)^{\square^n/\sigma}$ is left adjoint, done (no dice!)
 - \odot Write every $\stackrel{\sim}{\mapsto}$ as a "cell complex" by small object argument
- ⊗ But does small object argument apply here? ... not quite

Story

- ⊗ Writing up argument that many cubical-style model structures don't present spaces...
- \otimes Funny but central lemma:

$$A \stackrel{\sim}{\longmapsto} B \implies A^{\square^n/\sigma} \stackrel{\sim}{\longmapsto} B^{\square^n/\sigma}$$

for well-chosen *n* and σ , where $\stackrel{\sim}{\mapsto}$ = trivial cofibrations

 \oslash Check for generating $\stackrel{\sim}{\mapsto}$ (\approx open box inclusions)

- \otimes Usual strategy:

 - \oslash Extend to all $\stackrel{\sim}{\longrightarrow}$ by one of two routes:
 - ⊙ If (-)□^{n/σ} is left adjoint, done (no dice!)
 ⊙ Write every → as a "cell complex" by small object argument
- ⊗ But does small object argument apply here? ... not quite

Theme: let's get structured!

Weak factorization systems

 \otimes On a category \mathscr{E} , pair $(\mathcal{L}, \mathcal{R})$ of $\mathcal{L}, \mathcal{R} \subseteq \mathsf{Ob} \, \mathscr{E}^{\rightarrow}$

- ⊗ Examples:
 - ⊘ (complemented mono, split epi) in adhesive categories
 - ⊘ (trivial cofibration, Kan fibration) in simplicial sets
 - ⊘ (trivial cofibration, uniform Kan fibration) in cubical sets

Generation by a set

 \otimes A wfs $(\mathcal{L}, \mathcal{R})$ might be generated by a set $S \subseteq \operatorname{Ob} \mathscr{E}^{\rightarrow}$:

$$\mathcal{R} = \{ f \in \mathcal{E}^{\rightarrow} \mid f \text{ right lifts against all } m \in S \}$$

- ⊗ Examples:
 - \oslash (complemented mono, split epi) in **Set** generated by $\{0 \rightarrowtail 1\}$
 - \oslash (trivial cofibration, Kan fibration) in simplicial sets generated by $\{\Lambda_k^n \rightarrowtail \Delta^n \mid n \leq k \in \mathbb{N}\}$

$$\begin{array}{ccc} \Lambda^n_k & \xrightarrow{\forall} & Y \\ \downarrow & & \nearrow & \downarrow f \\ \Delta^n & \xrightarrow{\forall} & X \end{array}$$

Generation by a category

 \otimes *f* right lifts against $u: \mathcal{J} \to \mathcal{E}^{\to}$ when

- ⊗ Examples:
 - \oslash (complemented mono, split epi) in **AbGrp** generated by full subcat of **CompMono(AbGrp**) on 0 \mathbb{Z}

⊘ (trivial cofibration, uniform Kan fibration) in cubical sets

Generation by a category: uniform fibrations

Generated by a diagram $u \colon \{0, 1\} \times \Phi \to \mathrm{PSh}(\Box)^{\to}$, where Φ a subcategory of monos $A \mapsto \Box^n$ and pullback squares between them

$$k \in \{0,1\}, \ m \downarrow^{u} \qquad \stackrel{u}{\longmapsto} \qquad \bigvee_{m \hat{\times} \delta_{k}} \delta_{k}$$

Generation by a category: uniform fibrations

⊗ Generated by a diagram $u: \{0,1\} \times \Phi \to \mathsf{PSh}(\Box)^{\to}$, where Φ a subcategory of monos $A \rightarrowtail \Box^n$ and pullback squares between them

$$k \in \{0,1\}, \ m \downarrow \qquad \qquad A \times \square^1 \cup \square^n$$

$$k \in \{0,1\}, \ m \downarrow \qquad \qquad \downarrow m \hat{\times} \delta_k$$

$$\square^n \times \square^1 \qquad \qquad A \times \square^1 \cup \square^n \qquad A \times \square^1 \cup \square^n \qquad A \times \square^1 \cup \square^n \qquad \qquad A \times \square^1 \cup \square^n \qquad$$

Generation by a category: uniform fibrations

⊗ Generated by a diagram $u: \{0,1\} \times \Phi \to PSh(\square)^{\rightarrow}$, where Φ a subcategory of monos $A \mapsto \square^n$ and pullback squares between them

$$k \in \{0, 1\}, \ m \downarrow \qquad \qquad A \times \square^1 \cup \square^n$$

$$\square^n \qquad \qquad \square^n \times \square^1$$

$$k \in \{0,1\}, \ m' \ \stackrel{u}{\searrow} \ \stackrel{u}{\longrightarrow} \ \stackrel{u}{\longrightarrow} \ \stackrel{u}{\searrow} \ \stackrel{u}{\longrightarrow} \ \stackrel{u}{\searrow} \ \stackrel{u}{\longrightarrow} \ \stackrel{u}{\longrightarrow$$

- ⊘ not constructively!
- \oslash even classically, only for some choices of Φ

25.04.15 – HoTT/UF

Small object arguments

 \otimes Often don't start from a WFS, but from generators S:

$$\mathcal{R} := \{ f \in \mathcal{E}^{\rightarrow} \mid f \text{ right lifts against all } m \in S \}$$

$$\mathcal{L} := \{ m \in \mathcal{E}^{\rightarrow} \mid m \text{ left lifts against all } f \in \mathcal{R} \}$$

⊗ But still need factorizations:

 \otimes When *S* is "small" enough and $\mathscr E$ is well-behaved enough, can use small object argument(s) to build factorizations

```
Y
```


- ⊗ Left factor is a cell complex: a transfinite composite of cobase changes of coproducts of generators
- \otimes By the "retract argument", any left map is a retract (in $\mathscr{E}^{\rightarrow}$) of one of these

Saturation

Def. $\mathcal{A} \subseteq \operatorname{Ob} \mathscr{E}^{\rightarrow}$ is saturated when it is closed under coproducts, cobase change, transfinite composition, and retracts.

- \otimes The left class of any wfs is saturated.
- \otimes When $(\mathcal{L}, \mathcal{R})$ is generated from \mathcal{S} by the SOA, \mathcal{L} is the least saturated class containing \mathcal{S} .

Saturation

Def. $\mathcal{A} \subseteq \operatorname{Ob} \mathscr{E}^{\rightarrow}$ is saturated when it is closed under coproducts, cobase change, transfinite composition, and retracts.

- \otimes The left class of any wfs is saturated.
- \otimes When $(\mathcal{L}, \mathcal{R})$ is generated from \mathcal{S} by the SOA, \mathcal{L} is the least saturated class containing \mathcal{S} .
- \otimes Example usage: if $F: \mathcal{E} \to \mathcal{E}$ preserves coproducts, cobase changes and transfinite compositions and $F(S) \subseteq \mathcal{L}$, then $F(\mathcal{L}) \subseteq \mathcal{L}$.
- ⊗ Our goal: find an equivalent for generation by a category!

- \otimes Generates a weak factorization from a diagram $u \colon \mathcal{J} \to \mathcal{E}^{\to}$
- \otimes Advantages over Quillen's argument:
 - ⊘ Factors through a standard free monad construction
 - \oslash Produces an algebraic weak factorization system

- \otimes Generates a weak factorization from a diagram $u \colon \mathcal{J} \to \mathcal{E}^{\to}$
- ⊗ Advantages over Quillen's argument:
 - ⊘ Factors through a standard free monad construction
 - ⊘ Produces an algebraic weak factorization system

- \otimes Generates a weak factorization from a diagram $u \colon \mathcal{J} \to \mathcal{E}^{\to}$
- ⊗ Advantages over Quillen's argument:

 - ⊘ Produces an algebraic weak factorization system

 \odot Dually for L

25.04.15 – HoTT/UF

- \otimes Generates a weak factorization from a diagram $u \colon \mathcal{J} \to \mathcal{E}^{\to}$
- ⊗ Advantages over Quillen's argument:
 - ⊘ Factors through a standard free monad construction
 - ⊘ Produces an algebraic weak factorization system

How does it work?: 1-step

$$\otimes$$
 Use density comonad $\mathrm{Den}_u \colon \mathscr{E}^{\to} \to \mathscr{E}^{\to}$ for $u \colon \mathscr{J} \to \mathscr{E}^{\to}$

$$Den_u(f) = colim_{j \in \mathcal{J}, \alpha: u_i \to f} u_i$$

"amalgamate all lifting problems against f"

$$\begin{array}{ccc}
\bigcirc & \longrightarrow X \\
\operatorname{Den}_{u}(f) \downarrow & & \downarrow f \\
\bigcirc & \longrightarrow Y
\end{array}$$

How does it work?: 1-step

 \otimes Use density comonad $\operatorname{Den}_u \colon \mathscr{E}^{\to} \to \mathscr{E}^{\to}$ for $u \colon \mathscr{J} \to \mathscr{E}^{\to}$

$$Den_u(f) := colim_{j \in \mathcal{J}, \alpha: u_i \to f} u_i$$

"amalgamate all lifting problems against f"

How does it work?: 1-step

$$\otimes$$
 Use density comonad $\mathrm{Den}_u \colon \mathscr{E}^{\rightarrow} \to \mathscr{E}^{\rightarrow}$ for $u \colon \mathscr{J} \to \mathscr{E}^{\rightarrow}$

$$Den_{u}(f) \coloneqq \operatorname{colim}_{j \in \mathcal{J}, \alpha \colon u_{i} \to f} u_{i}$$

"amalgamate all lifting problems against f"

- \otimes $R_1(f) := f_1$ defines a pointed endofunctor on $\mathscr{E}^{\rightarrow}$
- \otimes Rmk: when \mathcal{J} is a set, $Den_u(f)$ is a coproduct of generators

How does it work?: free monad

- \otimes Now take the free monad on the pointed endofunctor R_1
- \otimes Given pointed endofunctor (T, τ) on \mathscr{C} , build free monad using

⊗ Idea in algebraic SOA case: repeatedly add solutions, but quotient out duplications

How does it work?: summary

Is it a "saturation"?

 \otimes Builds Lf as a transfinite composite

$$X \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{\kappa}$$

... but step maps may not be left maps!

 \otimes Problem: collapsing duplicated solutions

Is it a "saturation"?

 \otimes Builds Lf as a transfinite composite

$$X \longrightarrow X_1 \longrightarrow X_2 \longrightarrow \cdots \longrightarrow X_{\kappa}$$

... but step maps may not be left maps!

⊗ Problem: collapsing duplicated solutions

$$\otimes$$
 Important: can constrain these to a class $\mathcal M$ but need

- ...
- $\oslash \widehat{\mathrm{Den}}_u \colon (\mathscr{E}^{\rightarrow})^{\rightarrow} \to \mathscr{E}^{\rightarrow}$ sends levelwise $\mathcal M$ to $\mathcal M$

which often holds for monos but not left maps, "cofibrations"

Is it a "saturation"?

$$\otimes$$
 \mathfrak{P} : don't look at maps $X_{\alpha} \to X_{\alpha+1}$, but $X \to X_{\alpha+1}$

⊗ See

as a colimit in the category of (L,ϵ) -coalgebras (i.e., left-structured maps)

Cell complexes

- \otimes *Lf* is built using colimits in (L, ϵ) -Coalg:
 - (a) sequential colimits

(b) pushouts $\begin{array}{cccc}
\circ & \longrightarrow & \circ \\
\circ & & \downarrow & \downarrow \\
\bullet & & \longrightarrow & \circ
\end{array}$

Cell complexes

 \otimes *Lf* is built using colimits in (L, ϵ) -Coalg:

 \otimes and "vertical" composition $\circ \longmapsto \circ \longmapsto \circ$

Cell complexes

 \otimes *Lf* is built using colimits in (*L*, ϵ)-Coalg:

- \otimes and "vertical" composition $\circ \longmapsto \circ \longmapsto \circ$
- $\otimes\,$ starting from coalgebras coming from the density comonad:

Universal property?

- \otimes Want the (L, ϵ) -coalgebras to be "smallest" with these structures
- \otimes Need composition of (L, ϵ) -coalgebras, so use Bourke–Garner double-categorical perspective

Universal property?

- \otimes Want the (L, ϵ) -coalgebras to be "smallest" with these structures
- \otimes Need composition of (L, ϵ) -coalgebras, so use Bourke–Garner double-categorical perspective
- \otimes Have a double category (L, ϵ) -Coalg where
 - \oslash objects are objects $A \in \mathscr{E}$,
 - \oslash horizontal morphisms are morphisms $f:A\to B$ in $\mathscr{E},$
 - \oslash vertical morphisms are (L, ϵ) -coalgebras $m: A \longrightarrow B$,
 - \oslash squares are morphisms of (L, ϵ) -coalgebras: $A \longrightarrow A'$

 $\begin{array}{ccc}
A & & \downarrow m' \\
B & \longrightarrow & B'
\end{array}$

 \otimes Call something like this a vertical structure on $\mathscr E$

Universal property

Thm: Fix $u: \mathcal{J} \to \mathcal{E}^{\to}$ for which algebraic SOA applies and "suitable" $\mathcal{M} \subseteq \text{Ob } \mathcal{E}^{\to}$.

Suppose $\mathbb A$ is a vertical structure on $\mathscr E$ with

Is it useful?

 $\otimes \;$ For uniform fibrations, $\mathrm{Den}_u\colon \mathcal{E}^{\to} \to \mathcal{E}^{\to}$ sends

This is the kind of reduction we need!

$$\otimes$$
 Our example: for $F : \mathscr{E} \to \mathscr{E}$ take $\mathbb{A} = F^{-1}((L, \epsilon)\text{-}\mathbb{C}\text{oalg})$

Is it useful?

 $\otimes \;$ For uniform fibrations, $\mathrm{Den}_u\colon \mathcal{E}^{\to} \to \mathcal{E}^{\to}$ sends

$$\begin{array}{cccc}
X & & & & A \times \square^1 \cup B & & A \times \square^1 \cup B \\
f \downarrow & & & & & \downarrow m_0 \, \hat{\times} \, \delta_0 & \sqcup & & \downarrow m_1 \, \hat{\times} \, \delta_1 \\
Y & & & & & B \times \square^1 & & & B \times \square^1
\end{array}$$

This is the kind of reduction we need!

$$\otimes$$
 Our example: for $F \colon \mathscr{E} \to \mathscr{E}$ take $\mathbb{A} = F^{-1}((L, \epsilon)\text{-}\mathbb{C}\text{oalg})$

 \otimes For (complemented mono, split epi) or (cofibration, trivial fibration), usually all left maps are in image of Den_u — useless!

Last remarks

⊗ Another application: building extension operations:

- \oslash key property for building cubical (and other) model structures
- ⊘ usually use a universe for this reduction—but do we need to? (no)

Last remarks

 $\otimes\,$ Another application: building extension operations:

- ⊘ key property for building cubical (and other) model structures
- ⊘ usually use a universe for this reduction—but do we need to? (no)
- ⊗ I forgot about retracts
 - \oslash With sufficiently structured retract lifting in \mathbb{A} , get (L, ϵ) -Coalg $\to \mathbb{A}^{\ddagger}$ or even (L, ϵ) -Coalg $\to \mathbb{A}$
 - ⊘ ... but don't know if these are "universal" (talk to me!)

The End!