Fitch-style modalities and parametric adjoints

Evan Cavallo with Daniel Gratzer, G. A. Kavvos, Adrien Guatto, & Lars Birkedal

draft:

https://jozefg.github.io/papers/ modalities-and-parametric-adjoints.pdf

"Modalities"

This talk is about designing type theories with modalities

2021 APR 28 | Sthlm-Gbg

"Modalities"

This talk is about designing type theories with **modalities** By this I roughly just mean unary connectives:

$\Box A$	A is necessarily true
$\triangleright A$	A is true later
$ A _{-1}$	A is merely true
$B \to A$	A is true conditional on B
B → A	A is true conditional* on E

"Modalities"

This talk is about designing type theories with **modalities** By this I roughly just mean unary connectives:

$\Box A$	A is necessarily true
$\triangleright A$	A is true later
$ A _{-1}$	A is merely true
$B \to A$	A is true conditional on B
B ⊸ A	A is true conditional* on B

From a type theory design perspective, the challenge comes when these interact strangely with the ambient context:

$$\frac{\cdot \vdash M : A}{\cdot \vdash \mathsf{box}(M) : \Box A}$$

but not

$$\frac{\Gamma \vdash M : A}{\Gamma \vdash \mathsf{box}(M) : \Box A}$$

- What do we need for a well-behaved modality?
- Fitch-style modalities-modal types that are right adjoints
- Improving elimination in the Fitch-style left adjoints that are parametric right adjoints
- FitchTT-multimodal framework for Fitch-style + PRA modalities

I'll work in a presentation with explicit substitutions:

$$\Delta \vdash \gamma : \Gamma \qquad \qquad \frac{\Delta \vdash \gamma : \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash M[\gamma] : A[\gamma]}$$

and so without named variables:

 $\frac{\Gamma \operatorname{ctx} \qquad \Gamma \vdash A \operatorname{type}}{\Gamma . A \operatorname{ctx}}$

 $\Gamma.A \vdash p_A : \Gamma$ $\Gamma.A \vdash v_A : A[p_A]$

2021 APR 28 | Sthlm-Gbg

Let's suppose we have a categorical model in mind:

simple type theory T	$_{ m category} \mathbb{C}$
$\Delta \vdash \gamma : \Gamma$	$\llbracket \gamma \rrbracket : \llbracket \Delta \rrbracket \to \llbracket \Gamma \rrbracket$
A type	$\llbracket A \rrbracket \in \mathbb{C}$
$\Gamma \vdash M : A$	$\llbracket M \rrbracket : \llbracket \Gamma \rrbracket \to \llbracket A \rrbracket$
?	$F:\mathbb{C}\to\mathbb{C}$

What of F can we bring into the type theory?

Formation is easy in simple type theory:

Γ type	A type	$A\in \mathbb{C}$
 Γ type 	OA type	$\overline{FA \in \mathbb{C}}$

Formation is easy in simple type theory:

Γ type	A type	$A \in \mathbb{C}$
 Γ type 	OA type	$\overline{FA \in \mathbb{C}}$

A functorial action gives us a kind of joint intro-elim:

$$\frac{\Delta \vdash \gamma : \Gamma}{\bullet \Delta \vdash \bullet \gamma : \bullet \Gamma} \qquad \frac{\Gamma \vdash M : A}{\bullet \Gamma \vdash \operatorname{act}(M) : \mathsf{O}A} \qquad \frac{f : A \to B}{Ff : FA \to FB}$$

But this rule does not hold up under substitution.

 $\frac{\Gamma \vdash M : A}{\bullet \Gamma \vdash \operatorname{act}(M) : \mathsf{O}A} \qquad \frac{\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash (\operatorname{act}(M))[\gamma] = ? : \mathsf{O}A}$

But this rule does not hold up under substitution.

$$\frac{\Gamma \vdash M : A}{\bullet \Gamma \vdash \operatorname{act}(M) : \mathsf{O}A} \qquad \frac{\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash (\operatorname{act}(M))[\gamma] = ? : \mathsf{O}A}$$

We would like to write something like

 $\frac{\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash (\operatorname{act}(M))[\gamma] = \operatorname{act}(M[...]) : \mathsf{O}A}$

But this rule does not hold up under substitution.

$$\frac{\Gamma \vdash M : A}{\bullet \Gamma \vdash \operatorname{act}(M) : \mathsf{O}A} \qquad \frac{\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash (\operatorname{act}(M))[\gamma] = ? : \mathsf{O}A}$$

We would like to write something like

$$\frac{\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A}{\Delta \vdash (\operatorname{act}(M))[\gamma] = \operatorname{act}(M[\ldots]) : \mathsf{O}A}$$

but this is impossible unless $\Delta = \bullet \Delta'$ and $\gamma = \bullet \gamma'$!

$$\frac{{}^{\bullet} \Delta' \vdash \bullet \gamma' : \bullet \Gamma^{"} \qquad \Gamma \vdash M : A}{\bullet \Delta' \vdash (\operatorname{act}(M))[\bullet \gamma'] = \operatorname{act}(M[\gamma']) : \mathsf{O}A}$$

Bierman & de Paiva 2000: Build a substitution into the term.

 $\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A$

 $\Delta \vdash \mathsf{mod}(M, \gamma) : \mathsf{O}A$

 $\operatorname{mod}(M, \gamma)[\delta] = \operatorname{mod}(M, \gamma \circ \delta)$

B-dP use this approach for a necessity operator.

Bierman & de Paiva 2000: Build a substitution into the term.

 $\Delta \vdash \gamma : \bullet \Gamma \qquad \Gamma \vdash M : A$

 $\Delta \vdash \mathsf{mod}(M, \gamma) : \mathsf{O}A$

 $\operatorname{mod}(M, \gamma)[\delta] = \operatorname{mod}(M, \gamma \circ \delta)$

B-dP use this approach for a necessity operator.

A downside: we want to have an equation like

 $\operatorname{mod}(M, \gamma. \square \circ \delta) = \operatorname{mod}(M\gamma, \delta)$

But it's problematic for deciding equality when can a substitution be so factored?

Split-context: Separate contexts and substitutions into zones. Pfenning-Davies 2001; Kavvos 2020; ...

Split-context: Separate contexts and substitutions into zones. Pfenning-Davies 2001; Kavvos 2020; ...

	$(\Theta;\Gamma)$ ctx	\sim	$\underline{F}\llbracket\Theta\rrbracket \times \llbracket\Gamma\rrbracket \in \mathbb{C}$	
	$; \Theta \vdash M : A$	5	$pod(M)[\theta,y] = mod(A)$	<i>π</i> [Δ])
Θ;Γι	$- \operatorname{mod}(M) : OA$	- 11 1	$\operatorname{IOU}(M)[0, \gamma] = \operatorname{IIOU}(M)$	1[.,0])

Works best when e.g. FFA = FA or similar—otherwise we want more and more zones

Same with multiple modalities

Fitch-style modality (Clouston 2018): Assume we have a left adjoint to F.

 $G: \mathbb{C} \to \mathbb{C}$ $\frac{GA \to B}{\overline{A \to FB}}$

Fitch-style modality (Clouston 2018): Assume we have a left adjoint to F.

	$\Gamma \operatorname{ctx}$	$\Delta \vdash \gamma : \Gamma$
$\mathbf{G}:\mathbb{C}\to\mathbb{C}$	Γ. 🔒 ctx	$\Delta. \triangleq \vdash \gamma. \triangleq : \Gamma. \triangleq$

$$\frac{GA \to B}{A \to FB}$$

Fitch-style modality (Clouston 2018): Assume we have a left adjoint to *F*.

$G:\mathbb{C}\to\mathbb{C}$	$\frac{\Gamma \operatorname{ctx}}{\Gamma \overset{\bullet}{\underset{\bullet}} \operatorname{ctx}} \qquad \frac{\Delta \vdash \gamma : \Gamma}{\Delta \overset{\bullet}{\underset{\bullet}} \vdash \gamma \overset{\bullet}{\underset{\bullet}} : \Gamma \overset{\bullet}{\underset{\bullet}}$		
$\underline{GA \to B}$	$\Gamma. \widehat{\blacksquare} \vdash M : A$		
$\overline{A \to FB}$	$\Gamma \vdash mod(M) : O\!A$		
	$mod(M)[\gamma] = mod(M[\gamma.])$		

Fitch-style modality (Clouston 2018): Assume we have a left adjoint to *F*.

$G:\mathbb{C}\to\mathbb{C}$	$\frac{\Gamma \text{ ctx}}{\Gamma \triangleq \text{ ctx}}$	$\frac{\Delta \vdash \gamma : \Gamma}{\Delta . \triangleq \vdash \gamma . \triangleq : \Gamma . \triangleq}$
$\frac{GA \to B}{A \to FB}$	$\Gamma \stackrel{\frown}{\leftarrow} M :$ $\Gamma \vdash \operatorname{mod}(M)$	A : O A
	mod(M)	$[\gamma] = mod(M[\gamma.\square])$

Note: we use F on types but not contexts Clouston 2018: $\blacklozenge \dashv \Box$, "possibility" adjoint to "necessity" Bahr–Grathwohl–Møgelberg 2017: $\checkmark \dashv \triangleright$, "tick" adjoint to "later"

2021 APR 28 | Sthlm-Gbg

Fitch-style modalities

We can derive a mod from act with the unit $\Gamma \vdash \eta : \bullet(\Gamma \square)$.

$$\frac{\Gamma . \widehat{\bullet} \vdash M : A}{\Gamma \vdash \operatorname{mod}(M) : \mathsf{O}A} \quad \rightsquigarrow \quad \frac{\Gamma . \widehat{\bullet} \vdash M : A}{(\Gamma . \widehat{\bullet}) \vdash \operatorname{act}(M) : \mathsf{O}A}$$

$$\frac{\Gamma \cdot \operatorname{act}(M) : \mathsf{O}A}{\Gamma \vdash \operatorname{act}(M)[n] : \mathsf{O}A}$$

We can derive a mod from act with the unit $\Gamma \vdash \eta : \bullet(\Gamma. \square)$.

$$\frac{\Gamma . \textcircled{\bullet} \vdash M : A}{\Gamma \vdash \operatorname{mod}(M) : \mathsf{O}A} \quad \rightsquigarrow \quad \frac{\Gamma . \textcircled{\bullet} \vdash M : A}{(\Gamma . \textcircled{\bullet}) \vdash \operatorname{act}(M) : \mathsf{O}A}$$

 η is the "universal obstruction to stability of act":

act
$$(M)[\gamma] = act(M)[\bullet(\gamma^{\dagger}) \circ \eta]$$

= $act(M[\gamma^{\dagger}])[\eta]$

We can derive a mod from act with the unit $\Gamma \vdash \eta : \bullet(\Gamma. \square)$.

$$\frac{\Gamma \square \vdash M : A}{\Gamma \vdash \operatorname{mod}(M) : \mathsf{O}A} \longrightarrow \frac{\Gamma \square \vdash M : A}{(\Gamma \square) \vdash \operatorname{act}(M) : \mathsf{O}A}$$

 η is the "universal obstruction to stability of act":

act(M)[
$$\gamma$$
] = act(M)[$\bullet(\gamma^{\dagger}) \circ \eta$]
= act(M[γ^{\dagger}])[η]

Derive act from mod with the counit: $act(M) := mod(M[\varepsilon])$

Fitch-style modalities

A useful parallel: exponentiation

$$\frac{\Delta \vdash \gamma : \Gamma \qquad \Gamma . B \vdash M : A}{\Delta \vdash \lambda(M)[\gamma] = \lambda(M[\gamma \times B]) : B \longrightarrow A}$$

We use a left adjoint and its action on substitutions:

The adjunction justifies an elim inverting the intro:

$\Gamma \vdash M: \mathbf{O}\!A$

 $\Gamma. \square \vdash \mathsf{unmod}(M) : A$

The adjunction justifies an elim inverting the intro:

 $\frac{\Gamma \vdash M : \mathsf{O}A}{\Gamma . \textcircled{} \vdash \mathsf{unmod}(M) : A}$

Same substitution problem!

 $\frac{\Delta \vdash \gamma : \Gamma . \bigoplus \Gamma \vdash M : \mathsf{O}A}{\Delta \vdash \mathsf{unmod}(M)[\gamma] = ? : A}$

No hope of reducing unless $\gamma = \gamma'$.

Clouston-Mannaa-Møgelberg-Pitts-Spitters 2018 (DRA)

Add a weakening step to the rule:

$$\Xi = A_1 \cdot \cdots \cdot A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \ \text{tel} & \Gamma \vdash M : \textbf{O}A \\ \hline \Gamma \cdot \blacksquare \cdot \Xi \vdash \textbf{unmod}_{\Xi}(M) : A \end{array} \right.$$

Clouston 2018 Clouston-Mannaa-Møgelberg-Pitts-Spitters 2018 (DRA)

Add a weakening step to the rule:

$$\Xi = A_1 \cdot \cdots \cdot A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \cdot \blacksquare \cdot \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

Inspect a substitution to determine how to substitute:

 $unmod_{\Xi}(M)[p_A] = unmod_{\Xi,A}(M)$ $unmod_{\Xi,A}(M)[\gamma,N] = unmod_{\Xi}(M)[\gamma]$ $unmod_{\Xi}(M)[\gamma, \square] = unmod_{\Xi}(M[\gamma])$

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

That this works depends on the specific properties of \mathbf{a} !

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathbf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

That this works depends on the specific properties of \mathbf{a} !

unmod_{Ξ}(*M*)[γ] defined by induction on γ , so can't easily add new substitutions

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

That this works depends on the specific properties of \mathbf{a} !

unmod_{Ξ}(*M*)[γ] defined by induction on γ , so can't easily add new substitutions

Eg.: $\Gamma . \triangle . \triangle \vdash j : \Gamma . \triangle \quad \rightsquigarrow \quad unmod.(M)[j] = ?$ Gratzer-Sterling-Birkedal 2019, MLTT_A

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

That this works depends on the specific properties of \mathbf{a} !

unmod_{Ξ}(*M*)[γ] defined by induction on γ , so can't easily add new substitutions

Eg.: $\Gamma . \triangle . \ominus + j : \Gamma . \triangle \longrightarrow unmod.(M)[j] = ?$ Gratzer-Sterling-Birkedal 2019, MLTT

Or might want to import substitutions from a model to get an internal language

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

$$\begin{pmatrix} \underline{\Delta} \to (\mathbf{O} \mid A) \\ \hline \underline{\Delta} \cdot \underline{\mathbf{O}} \to A \end{pmatrix}$$

$$\underline{\Gamma \vdash M : \mathbf{O}A} \qquad \underline{\Gamma} \cdot (\mathbf{O} \mid A) \vdash N : C$$

$$\overline{\Gamma \vdash \operatorname{elim}(M, N) : C}$$

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

$$\begin{pmatrix} \underline{\Delta} \to (\mathbf{O} \mid A) \\ \hline \hline \Delta \cdot \underline{\bullet} \to A \end{pmatrix}$$

$$\underline{\Gamma \vdash M : \mathbf{O}A} \qquad \Gamma.(\mathbf{O} \mid A) \vdash N : C$$

$$\overline{\Gamma \vdash \operatorname{elim}(M, N) : C}$$

Works generally for dependent right adjoints, and for multiple interacting modalities.

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

$$\begin{pmatrix} \Delta \to (\bigcirc | A) \\ \hline \Delta . \blacksquare \to A \end{pmatrix}$$

$$\frac{\Gamma \vdash M : \bigcirc A \qquad \Gamma . (\bigcirc | A) \vdash N : C}{\Gamma \vdash \operatorname{elim}(M, N) : C}$$

Works generally for dependent right adjoints, and for multiple interacting modalities.

but weaker and less convenient than the negative rule—doesn't embed DRA or $\mathsf{MLTT}_{\clubsuit}$

2021 APR 28 | Sthlm-Gbg
First cut: can we repeat the Fitch-style intro trick? Assume that we have an adjoint *triple* $H \dashv G \dashv F$

$$\frac{HA \to B}{A \to GB} \qquad \frac{\Delta . \blacksquare + \gamma^{\dagger} : \Gamma}{\Delta + \gamma : \Gamma . \blacksquare}$$

First cut: can we repeat the Fitch-style intro trick? Assume that we have an adjoint *triple* $H \dashv G \dashv F$

$$\frac{HA \to B}{A \to GB} \qquad \frac{\Delta . \blacksquare + \gamma^{\intercal} : \Gamma}{\Delta + \gamma : \Gamma . \blacksquare}$$

Now we can push all substitutions but the unit into unmod:

unmod(M)[η] = unmod(M)[γ^{\dagger} . $\square \circ \eta$] = unmod(M[γ])[η]

 $\Gamma = H + M : OA$

 $\Gamma \vdash \mathsf{unmod}(M)[\eta] : A$

...but this is not as general as we would like, and we can do better!

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not \ (-).B \quad \dashv \quad B \rightarrow (-)$$

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not (-).B \quad \dashv \quad B \rightarrow (-)$$

Try naively inverting this rule:

 $\frac{\Gamma \vdash F : B \longrightarrow A}{\Gamma . B \vdash \mathsf{un}\lambda(F) : A}$

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not (-).B \quad \dashv \quad B \rightarrow (-)$$

Try naively inverting this rule:

$$\frac{\Gamma \vdash F : B \longrightarrow A}{\Gamma . B \vdash \mathsf{un}\lambda(F) : A} + \Delta \vdash \gamma : \Gamma . B$$

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not \vdash (-).B \quad \dashv \quad B \rightarrow (-)$$

Try naively inverting this rule:

$$\frac{\Gamma \vdash F : B \longrightarrow A}{\Gamma . B \vdash \mathsf{un}\lambda(F) : A} + \Delta \vdash \gamma : \Gamma . B \left\{ \begin{array}{l} \Delta \vdash \gamma' \coloneqq \mathsf{p} \circ \gamma : \Gamma \\ \Delta \vdash N \coloneqq \mathsf{v}[\gamma] : B \end{array} \right.$$

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not \neg (-).B \quad \dashv \quad B \rightarrow (-)$$

Try naively inverting this rule:

$$\frac{\Gamma \vdash F : B \longrightarrow A}{\Gamma . B \vdash \mathsf{un}\lambda(F) : A} + \Delta \vdash \gamma : \Gamma . B \left\{ \begin{array}{l} \Delta \vdash \gamma' \coloneqq \mathsf{p} \circ \gamma : \Gamma \\ \Delta \vdash N \coloneqq \mathsf{v}[\gamma] : B \end{array} \right.$$

 $un\lambda(F)[\gamma] = un\lambda(F[\gamma'])[id.N]$ Obstruction determined by $\Delta \vdash N : B$

...but this is not as general as we would like, and we can do better!

 $\frac{\Gamma.B \vdash M : A}{\Gamma \vdash \lambda(M) : B \longrightarrow A}$

$$\not \neg (-).B \quad \dashv \quad B \rightarrow (-)$$

Try naively inverting this rule:

$$\frac{\Gamma \vdash F : B \longrightarrow A}{\Gamma . B \vdash \mathsf{un}\lambda(F) : A} + \Delta \vdash \gamma : \Gamma . B \left\{ \begin{array}{l} \Delta \vdash \gamma' \coloneqq \mathsf{p} \circ \gamma : \Gamma \\ \Delta \vdash N \coloneqq \mathsf{v}[\gamma] : B \end{array} \right.$$

 $un\lambda(F)[\gamma] = un\lambda(F[\gamma'])[id.N] \qquad FN := un\lambda(F)[id.N]$ Obstruction determined by $\Delta \vdash N : B$

2021 APR 28 | Sthlm-Gbg

 $\Delta \dashrightarrow \Gamma \qquad \cong \qquad \begin{array}{c} \Delta & \dashrightarrow & \Gamma . B \\ \searrow & \swarrow & \swarrow \\ B \end{array}$

 $\Delta \dashrightarrow \Gamma \qquad \cong \qquad \begin{array}{c} \Delta & \dashrightarrow & \Gamma . B \\ \searrow & \swarrow & \swarrow \\ B \end{array}$

 $\Delta \dashrightarrow \rightarrow \Gamma \cong \bigwedge_{N \searrow} \bigwedge_{I_{\Gamma} \times B} \bigvee_{I_{\Gamma} \times B}$ $\operatorname{dom}(N) \dashrightarrow \Gamma \qquad \cong \qquad N \dashrightarrow I_{\Gamma} \times B$ $\operatorname{in} \mathbb{C} \qquad \qquad \operatorname{in} \mathbb{C}/B$

 $\Delta \longrightarrow \Gamma.B$ N V $!_{\Gamma} \times B$ \cong $\Delta \longrightarrow \Gamma$ R $N \dashrightarrow !_{\Gamma} \times B$ $\text{in } \mathbb{C}/B$ $\operatorname{dom}(N) \dashrightarrow \Gamma$ \cong in \mathbb{C}

 $\operatorname{dom}(N) \dashrightarrow \Gamma \cong N \dashrightarrow !_{\Gamma} \times B$ $\operatorname{in} \mathbb{C} \qquad \operatorname{in} \mathbb{C}/B$

Def: $F : \mathbb{C} \to \mathbb{D}$ is a *parametric right adjoint (PRA)* when $F/1 : \mathbb{C}/1 \to \mathbb{D}/F1$ is a right adjoint.

(see Carboni-Johnstone 1995, Weber 2007)

Def: $F : \mathbb{C} \to \mathbb{D}$ is a *parametric right adjoint (PRA)* when $F/1 : \mathbb{C}/1 \to \mathbb{D}/F1$ is a right adjoint.

(see Carboni-Johnstone 1995, Weber 2007)

A less degenerate example: affine functions Element of $I \multimap A$ is a term over a "fresh" name

A less degenerate example: affine functions Element of $I \multimap A$ is a term over a "fresh" name

separated product

 $\Gamma \otimes \mathbf{I} \vdash M : A$

 $\Gamma \vdash \lambda(M) : \mathbf{I} \multimap A$

A less degenerate example: affine functions Element of $\mathbf{I} \multimap A$ is a term over a "fresh" name

A less degenerate example: affine functions Element of I - A is a term over a "fresh" name

separated product		remove r from the context
$\overbrace{\Gamma\otimes \mathbf{I}}^{}\vdash M:A$	$\Delta \vdash r : \mathbf{I}$	$\overbrace{\Delta/(r:\mathbf{I})}^{} \vdash F:\mathbf{I} \multimap A$
$\Gamma \vdash \lambda(M) : \mathbf{I} \multimap A$		$\Gamma \vdash F@r : A$
$\lambda(M)@r = M[\eta_r]$		$F = \lambda(F[\varepsilon_{\Gamma}]@\mathbf{v})$

A less degenerate example: affine functions Element of $I \rightarrow A$ is a term over a "fresh" name

Substitution uses the action of "restriction":

 $(F@r)[\gamma] = (F[\gamma/(r:\mathbf{I})])@(r[\gamma])$

A less degenerate example: affine functions Element of $I \rightarrow A$ is a term over a "fresh" name

Substitution uses the action of "restriction":

 $(F@r)[\gamma] = (F[\gamma/(r:\mathbf{I})])@(r[\gamma])$

see also Cheney 2012, Cavallo-Harper 2020

It was there all all along!

Recall the DRA rule:

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

It was there all all along!

Recall the DRA rule:

$$\Xi = A_1 \cdots A_n \left\{ \begin{array}{ll} \Gamma \vdash \Xi \text{ tel} & \Gamma \vdash M : \mathsf{O}A \\ \hline \Gamma \bullet \blacksquare . \Xi \vdash \mathsf{unmod}_{\Xi}(M) : A \end{array} \right.$$

Proof of substitution admissibility uses that is a PRA in the syntactic model

$$\begin{array}{c} \Gamma \bullet \Xi \\ \downarrow \\ \cdot \bullet \end{array} \qquad \longmapsto \qquad \Gamma \\ \end{array}$$

Now we have the key ingredient for a general modal framework, **FitchTT**:

- Parameterized by an arbitrary selection of interacting modalities
 - As in Licata-Shulman 2015, MTT
 - Problematic in earlier Fitch-style calculi
- Elimination of substitution without analysis of substitutions
 - Enables use as an internal language
 - Or addition of substitution axioms more generally (eg. to express properties of the "restriction")

Mode theory

Licata–Shulman 2015: Specify interacting modalities with a strict 2-category

<i>m</i> mode	\sim	$\Gamma \operatorname{ctx} @ m, \\ \Gamma \vdash A \operatorname{type} @ m, \dots$
$\mu: m \to n$	\sim	$\frac{\Gamma \operatorname{ctx} @ m}{\Gamma.\{\mu\} \operatorname{ctx} @ n}$
$\alpha :: v \Longrightarrow \mu : m \to n$	~~>	$\frac{\Gamma \operatorname{ctx} @ m}{\Gamma.\{\mu\} \vdash \{\alpha\}_{\Gamma} : \Gamma.\{\nu\} @ n}$

Mode theory is a parameter to FitchTT

Mode theory

On top, we make each $-.{\mu}$ a PRA:

 $\frac{\mu: n \to m \quad \Gamma \operatorname{ctx} @ n \quad \Gamma \vdash r: \cdot .\{\mu\}}{\Gamma/(r:\mu) \operatorname{ctx} @ m}$

Mode theory

On top, we make each $-.{\mu}$ a PRA:

 $\frac{\mu: n \to m \qquad \Gamma \operatorname{ctx} @ n \qquad \Gamma \vdash r: \cdot .\{\mu\}}{\Gamma/(r:\mu) \operatorname{ctx} @ m}$

With unit and counit like so:

 $\Gamma \vdash \eta[r] : \Gamma/(r:\mu).\{\mu\} @ n$ $\Gamma.\{\mu\}/(!.\{\mu\}:\mu) \vdash \epsilon[\Gamma] : \Gamma @ m$

and triangle, naturality, etc equations...

Formation-matches introduction

 $\frac{\mu: n \to m \qquad \Gamma.\{\mu\} \vdash A \text{ type } @ n}{\Gamma \vdash \langle \mu \mid A \rangle \text{ type } @ m}$

Formation-matches introduction

 $\frac{\mu: n \to m \qquad \Gamma.\{\mu\} \vdash A \text{ type } @ n}{\Gamma \vdash \langle \mu \mid A \rangle \text{ type } @ m}$

Introduction-Fitch-style

 $\frac{\mu: n \to m \qquad \Gamma.\{\mu\} \vdash M: A @ n}{\Gamma \vdash \mathsf{mod}(M): \langle \mu \mid A \rangle @ m}$

Formation-matches introduction

 $\frac{\mu: n \to m \qquad \Gamma.\{\mu\} \vdash A \text{ type } @ n}{\Gamma \vdash \langle \mu \mid A \rangle \text{ type } @ m}$

Introduction-Fitch-style

 $\frac{\mu: n \to m \qquad \Gamma.\{\mu\} \vdash M: A @ n}{\Gamma \vdash \mathsf{mod}(M): \langle \mu \mid A \rangle @ m}$

Elimination-using parametric right adjoint

$$\frac{\mu: n \to m \qquad \Gamma/(r:\mu) \vdash F: \langle \mu \mid A \rangle @ m}{\Gamma \vdash F@r: A[\eta_r] @ n}$$

2021 APR 28 | Sthlm-Gbg

To encode affine functions, add transformations for structural rules:

$$m \mod \mu: m \to m$$

weak :: id $\Rightarrow \mu : m \rightarrow m$

 $exch:: \mu \circ \mu \Rightarrow \mu \circ \mu : m \to m$

+ equations

2021 APR 28 | Sthlm-Gbg

FitchTT is a GAT, so we get a notion of model for free Moreover, presheaves are a simple source of models:

Thm: Fix a pseudofunctor $F : \mathcal{M}^{coop} \to Cat$ such that $F(m) = PSh(C_m)$ for each $m : \mathcal{M}$, and for each $\mu : n \to m$ either

1.
$$F(\mu) = f_!$$
 for a PRA $f : C_m \to C_n$.

2.
$$F(\mu) = f^*$$
 for any $f : C_n \to C_m$.

Then there exists a model of FitchTT with mode theory \mathcal{M} where F(m) models mode m and $F(\mu)$ models $-.{\mu}$.

Examples

- Affine cubical sets
 - $\mathbf{I} \multimap A$ with $0, 1 \in \mathbf{I}$
 - Bezem-Coquand-Huber 2013, Bernardy-Coquand-Moulin 2015
 - Nominal sets by generalizing to sheaves (cf. Cheney 2015)

Examples

- Affine cubical sets
 - $-\mathbf{I} \multimap A$ with $0, 1 \in \mathbf{I}$
 - Bezem-Coquand-Huber 2013, Bernardy-Coquand-Moulin 2015
 - Nominal sets by generalizing to sheaves (cf. Cheney 2015)
- Guarded type theory semantics in $PSh(\omega)$
 - qua stripped-down Clocked Type Theory (CloTT) Bahr-Grathwohl-Møgelberg 2017
 - "later" \triangleright and "always" \Box with $\Box \triangleright A \simeq \Box A$
 - See tick variables—function-like presentation of later as an instance of PRA structure
- Assuming a left adjoint—to F or F/1—neatly resolves admissibility of substitution into the right adjoint
- Several existing systems support this FitchTT PRA structure —in both syntactic and standard semantic models
- Get a convenient "variable"-based syntax for such modalities

• In other cases, defer to MTT-combine with FitchTT?