Fitch-style modalities
and parametric adjoints

Evan Cavallo
with Daniel Gratzer, G. A. Kavvos,
Adrien Guatto, & Lars Birkedal

2021 APR 28 | Sthim-Gbg

draft:
https:/jozefg.github.io/papers/
modalities-and-parametric-adjoints.pdf

2021 APR 28 | Sthim-Gbg

“Modalities”

This talk is about designing type theories with modalities

2021 APR 28 | Sthim-Gbg

“Modalities”

This talk is about design
By this | roughly just me

OA
>A
A1
B— A
B—oA

ing type theories with modalities
an unary connectives:

A is necessarily true

A is true later

A is merely true

A is true conditional on B

A is true conditional® on B

2021 APR 28 | Sthim-Gbg

“Modalities”

This talk is about designing type theories with modalities
By this | roughly just mean unary connectives:

OA
>A
A1
B— A
B—oA

A is necessarily true

A is true later

A is merely true

A is true conditional on B

A is true conditional® on B

From a type theory design perspective, the challenge comes when
these interact strangely with the ambient context:

-FM:A

'rM:A

but not

-+ box(M) : DA I+ box(M) : OA

2021 APR 28 | Sthim-Gbg

e What do we need for a well-behaved modality?
e Fitch-style modalities—modal types that are right adjoints

e Improving elimination in the Fitch-style—
left adjoints that are parametric right adjoints

e FitchTT—multimodal framework for Fitch-style + PRA modalities

2021 APR 28 | Sthim-Gbg

Note: substitution

I'll work in a presentation with explicit substitutions:

Ary:T F'rM:A

Ary:T
A+ Myl : Aly]

and so without named variables:

I' ctx I' - A type F'Arpa:T
T A ctx [.AFva:Alpal

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Let's suppose we have a categorical model in mind:

impl
typsér?lll)ei)ry T category C
Avy:T (][] = [T1]
A type [A] e C
FrrM:A [M] :[T] — [A]
? F:C—-C

What of F' can we bring into the type theory?

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Formation is easy in simple type theory:

I type A type AeC
oI type OA type FAeC

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Formation is easy in simple type theory:

I type A type AeC
oI type OA type FAeC

A functorial action gives us a kind of joint intro-elim:

Ary:T 'rM:A f:A—B
OA oy : el OI I act(M) : OA Ff:FA — FB

2021 APR 28 | Sthim-Gbg

Modalities in type theory

But this rule does not hold up under substitution.
'tM:A Ary:@ 'rtM:A
Ol + act(M) : OA A F (act(M))[y] =?:0A

2021 APR 28 | Sthim-Gbg

Modalities in type theory

But this rule does not hold up under substitution.
'tM:A Ary:@ 'rtM:A
Ol + act(M) : OA A F (act(M))[y] =?:0A

We would like to write something like
Ary:e@r 'rM:A
A+ (act(M))[y] = act(M]...]) : OA

2021 APR 28 | Sthim-Gbg

Modalities in type theory

But this rule does not hold up under substitution.
'tM:A Ary:@ 'rtM:A
Ol + act(M) : OA A F (act(M))[y] =?:0A

We would like to write something like
Ary:e@r 'rM:A
A+ (act(M))[y] = act(M]...]) : OA

but this is impossible unless A = ®A” and y = @y”!
‘ON' + @y’ : @O '-M:A
oA’ + (act(M))[®y’] = act(M[y']) : OA

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Bierman & de Paiva 2000: Build a substitution into the term.

Ary:@ F'rM:A
A+ mod(M,y) : OA

mod (M, y)[8] = mod(M,y o §)

B-dP use this approach for a necessity operator.

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Bierman & de Paiva 2000: Build a substitution into the term.

Ary:@ F'rM:A
A+ mod(M,y) : OA

mod (M, y)[8] = mod(M,y o §)
B-dP use this approach for a necessity operator.
A downside: we want to have an equation like
mod(M, y.@ o §) = mod(My, §)

But it's problematic for deciding equality—
when can a substitution be so factored?

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Split-context: Separate contexts and substitutions into zones.
Pfenning-Davies 2001; Kavvos 2020; ...

(©;T)ctx ~ F[O] x[T] eC

cOFM:A

O mod(p) oa et MLyl =mod(ML50)

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Split-context: Separate contexts and substitutions into zones.
Pfenning-Davies 2001; Kavvos 2020; ...

(©;T)ctx ~ F[O] x[T] eC

cOFM:A
©;I F mod(M) : OA

mod(M)[6;y] = mod(M[-; 6])

Works best when e.g. FF'A = F'A or similar—otherwise we want
more and more zones

Same with multiple modalities

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Fitch-style modality (Clouston 2018):
Assume we have a left adjoint to F.

G:C—->C

GA — B
A — FB

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Fitch-style modality (Clouston 2018):
Assume we have a left adjoint to F.

G CoC I' ctx Ary:T
:C—>

T@ctx A@ry&:TH
GA— B
A — FB

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Fitch-style modality (Clouston 2018):
Assume we have a left adjoint to F.

G CoC I' ctx Ary:T
5 —
T@ctx A@ry&:TH
GA— B r&rM:A
A — FB I' F mod(M) : OA

mod(M)[y] = mod(M[y.&])

2021 APR 28 | Sthim-Gbg

Modalities in type theory

Fitch-style modality (Clouston 2018):
Assume we have a left adjoint to F.

G CoC I' ctx Ary:T
5 —
T@ctx A@ry&:TH
GA— B r&rM:A
A — FB I' F mod(M) : OA

mod(M)[y] = mod(M[y.&])

Note: we use F' on types but not contexts
Clouston 2018: ¢ 4 [, “possibility” adjoint to “necessity”
Bahr—Grathwohl—Mggelberg 2017: /" 4 1>, “tick” adjoint to “later”

2021 APR 28 | Sthim-Gbg

Fitch-style modalities

We can derive a mod from act with the unit T' + 7 : ®(T.&).
reé+-M:A
A o(T'@) + act(M) : OA
I'+act(M)[n] : OA

rarM:A
I' - mod(M) : OA

2021 APR 28 | Sthim-Gbg

Fitch-style modalities

We can derive a mod from act with the unit T' + 7 : ®(T.&).
reé+-M:A
A o(T'@) + act(M) : OA
I'+act(M)[n] : OA

rarM:A
I' - mod(M) : OA

1 is the “universal obstruction to stability of act”

act(M)[y] = act(M) [.(Y-;-) o1]
= act(M[y"])[n]

2021 APR 28 | Sthim-Gbg

Fitch-style modalities

We can derive a mod from act with the unit T' + 7 : ®(T.&).
reé+-M:A
A o(T'@) + act(M) : OA
I'+act(M)[n] : OA

rarM:A
I' - mod(M) : OA

1 is the “universal obstruction to stability of act”

act(M)[y] = act(M) [.(Y-;-) o1]
= act(M[y"])[n]

Derive act from mod with the counit: act(M) = mod(M|[¢])

2021 APR 28 | Sthim-Gbg

Fitch-style modalities

A useful parallel: exponentiation

Ary:T F'BFrM:A
A+ AM)[y] =AM[yxB]):B— A

We use a left adjoint and its action on substitutions:
—-).B4B — (-
) =) Ary:T
T.BF---: A ABryxB:TI.B
'r---:B— A

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

The adjunction justifies an elim inverting the intro:

'-M:0A
r&+unmod(M): A

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

The adjunction justifies an elim inverting the intro:

'-M:0A
r&+unmod(M): A

Same substitution problem!

Ary: T I'-M:0A
A Funmod(M)[y] =7:A

No hope of reducing unless y = y’.ﬂ

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

Clouston 2018
Clouston-Mannaa-Mggelberg-Pitts-Spitters 2018 (DRA)

Add a weakening step to the rule:
E=A-- A, {TrEtel T+M:0A
I &2+ unmodg(M) : A

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

Clouston 2018
Clouston-Mannaa-Mggelberg-Pitts-Spitters 2018 (DRA)

Add a weakening step to the rule:
E=A-- A, {TrEtel T+M:0A
I &2+ unmodg(M) : A

Inspect a substitution to determine how to substitute:
unmodz=(M)[pa] = unmodz 4 (M)
unmodg 4(M)[y.N] = unmodz(M)[y]
unmod.(M)[y.@] = unmod.(M[y])

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

=A;- A {T+rEtel TrM:0A
&2+ unmods(M) : A

[1]

That this works depends on the specific properties of @!

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

=A;- A {T+rEtel TrM:0A
&2+ unmods(M) : A

[1]

That this works depends on the specific properties of @!

unmodg (M) [y] defined by induction on y,
so can't easily add new substitutions

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

[1]

=A;- A {T+rEtel TrM:0A

&2+ unmods(M) : A
That this works depends on the specific properties of @!

unmodg (M) [y] defined by induction on y,
so can't easily add new substitutions

Eg: Ta@rj:T& ~ unmod(M)[j]="?
Gratzer-Sterling-Birkedal 2019, MLTTg

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

[1]

=A;- A {T+rEtel TrM:0A
&2+ unmods(M) : A

That this works depends on the specific properties of @!

unmodg (M) [y] defined by induction on y,
so can't easily add new substitutions

Eg: Ta@rj:T& ~ unmod(M)[j]="?
Gratzer-Sterling-Birkedal 2019, MLTTg

Or might want to import substitutions from a model
to get an internal language

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

A = (O] A)
STevs
TFM:0A T.(O|A)FN:C
I'kelim(M,N):C

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

A = (O] A)
STevs
TFM:0A T.(O|A)FN:C
I'kelim(M,N):C

Works generally for dependent right adjoints,
and for multiple interacting modalities.

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

Gratzer-Kavvos-Nuyts-Birkedal 2020: MTT

Use a positive eliminator with modal hypotheses, roughly:

A = (O] A)
STevs
TFM:0A T.(O|A)FN:C
I'kelim(M,N):C

Works generally for dependent right adjoints,
and for multiple interacting modalities.

but weaker and less convenient than the negative rule—
doesn't embed DRA or MLTTg

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

First cut: can we repeat the Fitch-style intro trick?

Assume that we have an adjoint triple H 4 G 4 F
HA — B Adry':T
A — GB Ary:T &

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

First cut: can we repeat the Fitch-style intro trick?

Assume that we have an adjoint triple H 4 G 4 F
HA — B Adry':T
A — GB Ary:T &

Now we can push all substitutions but the unit into unmod:
unmod(M)[5] = unmod(M)[y" .@o 7]
= unmod(M(y]) [7]

I's'+M:0A
' unmod(M)[n] : A

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

Try naively inverting this rule:

I''+F:B— A
T.BF uni(F): A

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

Try naively inverting this rule:

I''+F:B— A
T.BF uni(F): A

+ Avry:I'B

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

Try naively inverting this rule:

I''+F:B— A
T.BF uni(F): A

Ar
+ AI—y:I‘.B{

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

Try naively inverting this rule:

I''+F:B— A
T.BF uni(F): A

Ar
+ AI—y:I‘.B{

unA(F)[y] = unA(Fly’)[id.N]

Obstruction determined
by AFN:B

2021 APR 28 | Sthim-Gbg

Elimination in the Fitch style

...but this is not as general as we would like, and we can do better!

'BrM:A
F'rA(M):B— A

4 (-).B 4 B—(-)

Try naively inverting this rule:

I''+F:B— A
T.BF uni(F): A

_ Ary =poy:T
+AI—y.F.B{A N :=v[y]:B

unA(F)[y] = unA(F[y'])[id.N] FN := unA(F)[id.N]

Obstruction determined
by AFN:B

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A---3T

[l
v
;;
=

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A---3T

[l
v
;;
=

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

N s T.B
A---2T = Z\N It x B
B
dom(N) --= T _ N ---> I xXB
in C - in C/B

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A---3T

[l
v
g
=

dom(N) --= T N ---> I xXB

IR

inC in C/B

C/B L °C

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

dom(N) --= T =~ N -- I xB

inC in C/B

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

dom(N) --= T =~ N -- I xB

inC in C/B

Def: F : C — D is a parametric right adjoint (PRA)
when F/1:C/1 — D/F1 is a right adjoint.

(see Carboni-Johnstone 1995, Weber 2007)

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

dom(N) --= T =~ N -- I xB

inC in C/B

Def: F : C — D is a parametric right adjoint (PRA)
when F/1:C/1 — D/F1 is a right adjoint.

(see Carboni-Johnstone 1995, Weber 2007)

dom — X B
¢ 1L Yc ¢ 1 *c
<~ Y~ __
(-xB)/1 B — —

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

separated
product

——

TolrM: A
THAM):I—-A

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

separated remove r

product from the context

reIrM: A Arr:1 A/(r:DrF:1 oA
TFAM):1—- A T'+F@r:A

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

separated remove r
product from the context
reIrM: A Arr:1 A/(r:DrF:1 oA
TFAM):1—- A T'+F@r:A
AM)@r = M(n,] F = A(F[er]@v)

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

separated remove r
product from the context
reIrM: A Arr:1 A/(r:DrF:1 oA
TFAM):1—- A T'+F@r:A
AM)@r = M(n,] F = A(F[er]@v)

Substitution uses the action of “restriction”:

(F@r) [yl = (Fly/(r : DD@(ry])

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

A less degenerate example: affine functions

Element of I —o A is a term over a “fresh” hame

separated remove r
product from the context
reIrM: A Arr:1 A/(r:DrF:1 oA
TFAM):1—- A T'+F@r:A
AM)@r = M(n,] F = A(F[er]@v)

Substitution uses the action of “restriction”:

(F@n)lyl = (Fly/(r : DD @(r[y]D)
see also Cheney 2012, Cavallo-Harper 2020

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

It was there all all along!

Recall the DRA rule:

E=A;---A, {T+Ztel TrM:0A
I &2+ unmod=(M) : A

2021 APR 28 | Sthim-Gbg

Parametric right adjoints

It was there all all along!

Recall the DRA rule:

E=A;---A, {T+Ztel TrM:0A
I &2+ unmod=(M) : A

Proof of substitution admissibility uses that &
is a PRA in the syntactic model

raz=
| - T
. &

2021 APR 28 | Sthim-Gbg

Multimodal type theory

Now we have the key ingredient for a general modal framework,
FitchTT:

e Parameterized by an arbitrary selection of
interacting modalities
— As in Licata-Shulman 2015, MTT

— Problematic in earlier Fitch-style calculi

e Elimination of substitution without analysis of substitutions

— Enables use as an internal language

— Or addition of substitution axioms more generally
(eg. to express properties of the “restriction”)

2021 APR 28 | Sthim-Gbg

Mode theory

Licata-Shulman 2015:
Specify interacting modalities with a strict 2-category

m mode > I'ctx @ m,
I'-Atype@m,...
I'ctx @m
pg:m—n
I'{y}ctx@n
I'ctx @ m

azv=lUu:m-—>n N>
T{u}F {a}r:T{v} @n

Mode theory is a parameter to FitchTT

2021 APR 28 | Sthim-Gbg

Mode theory

On top, we make each —.{1} a PRA:

g:n—m Fctx@n Frr: - {u}
[/(r:p)ctx@m

2021 APR 28 | Sthim-Gbg

Mode theory

On top, we make each —.{1} a PRA:

g:n—m Fctx@n Frr: - {u}
[/(r:p)ctx@m

With unit and counit like so:

Tenlr]:T/(r:p){py @n

CApd/({pt:p) Fe[l]:T@m

and triangle, naturality, etc equations...

2021 APR 28 | Sthim-Gbg

Modal types

Formation—matches introduction

p:n—m I'{u} -rAtype@n
I'+{(u|A)type @ m

2021 APR 28 | Sthim-Gbg

Modal types

Formation—matches introduction

p:n—m I'{u} -rAtype@n
I'+{(u|A)type @ m

Introduction—Fitch-style
pg:n—m F{u}rM:A@n
I'Fmod(M):(u|A) @m

2021 APR 28 | Sthim-Gbg

Modal types

Formation—matches introduction

p:n—m I'{u} -rAtype@n
I'+{(u|A)type @ m

Introduction—Fitch-style
pg:n—m F{u}rM:A@n
I'Fmod(M):(u|A) @m

Elimination—using parametric right adjoint
pU:n—om T/(r:p)rF:{(u|Ay@m
I'+Far:Alp] @n

2021 APR 28 | Sthim-Gbg

For example

To encode affine functions, add transformations for structural rules:

m mode pH:m-—om

weak :id = p:m—m

exch: pou=pou:m-—om

+ equations

2021 APR 28 | Sthim-Gbg

FitchTT is a GAT, so we get a notion of model for free

Moreover, presheaves are a simple source of models:

Thm: Fix a pseudofunctor F : M“% — Cat such that
F(m) = PSh(C,,) for eachm : M, and foreach y: n — m
either

1. F(u) = fiforaPRA f: C,, — C,.
2. F(u) = f*forany f : C, — Cp,.

Then there exists a model of FitchTT with mode theory M
where F(m) models mode m and F(u) models —.{u}.

2021 APR 28 | Sthim-Gbg

e Affine cubical sets
— I -oAwith0,1€l

— Bezem-Coquand-Huber 2013,
Bernardy-Coquand-Moulin 2015

— Nominal sets by generalizing to sheaves (cf. Cheney 2015)

2021 APR 28 | Sthim-Gbg

e Affine cubical sets
— I -oAwith0,1€l

— Bezem-Coquand-Huber 2013,
Bernardy-Coquand-Moulin 2015

— Nominal sets by generalizing to sheaves (cf. Cheney 2015)

e Guarded type theory semantics in PSh(w)

— qua stripped-down Clocked Type Theory (CIoTT)
Bahr-Grathwohl-Mggelberg 2017

— “later” > and “always” [0 with O>A ~ OA

— See tick variables—function-like presentation of later—
as an instance of PRA structure

2021 APR 28 | Sthim-Gbg

e Assuming a left adjoint—to F'or F'/ 1—neatly resolves
admissibility of substitution into the right adjoint

e Several existing systems support this FitchTT PRA structure
—in both syntactic and standard semantic models

e Get a convenient “variable”-based syntax for such modalities

e |n other cases, defer to MTT—combine with FitchTT?

2021 APR 28 | Sthim-Gbg

