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Homotopy type theory proposes higher inductive types (HITs) as a means of defining and reasoning about

inductively-generated objects with higher-dimensional structure. As with the univalence axiom, however,

homotopy type theory does not specify the computational behavior of HITs. Computational interpretations

have now been provided for univalence and specific HITs by way of cubical type theories, which use a

judgmental infrastructure of dimension variables. We extend the cartesian cubical computational type theory

introduced by Angiuli et al. with a schema for indexed cubical inductive types (CITs), an adaptation of higher

inductive types to the cubical setting. In doing so, we isolate the canonical values of a cubical inductive type

and prove a canonicity theorem with respect to these values.
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1 INTRODUCTION

The basic premise of constructivism is that a sufficiently expressive programming language provides
a foundation for all of mathematics. This principle is elegantly embodied in Martin Löf’s extensional
type theory [Martin-Löf 1982], which we will call computational type theory (CTT) following Nuprl
terminology [Allen et al. 2006]. Beginning from an untyped language, Martin-Löf defines which
program values represent propositions (i.e., types) and which values are canonical evidence for
each proposition. A program is a proof of a proposition if it evaluates to a value which is canonical
evidence for that proposition. In this setting, proofs run: a proof that a number exists is a program
for computing that number.
While Martin-Löf’s type theory is an expressive basis for formalizing mathematics, there is

room for improvement in the area of equality reasoning. Specifically, the type equality relation is
overly intensional: types can be equal only if they have exactly the same elements. In informal
mathematics, on the contrary, it is common to treat sets as interchangeable even when they are
merely isomorphic. The same issues (and others) arise in Martin-Löf’s intensional type theory (ITT),
a formal systemwhich interprets into CTT but prioritizes proof-theoretic properties like decidability
of equality judgments [Martin-Löf 1975]. Seeking to bridge this gap, Voevodsky proposed adding the
univalence axiom to ITT, a rule which puts identifications between typesA and B in correspondence
with equivalences (roughly, isomorphisms) betweenA and B [Voevodsky 2010]. Here, identifications
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between A and B are elements of the identity type IdU(A,B), which is characterized in ITT as the
least reflexive binary relation on the universe of typesU. Crucial to this move is the consistency of
univalence with that characterization, which is weak enough to permit multiple distinct elements
of IdU(A,B) [Hofmann and Streicher 1998].
The standard computational interpretation of ITT into CTT, however, is incompatible with

the univalence axiom. That interpretation takes the identity type IdA(M,N ) to the equality type
EqA(M,N ), which is inhabited by the single value ∗ if and only ifM and N are equal as programs
inhabiting A. The type EqU(A,B) thus has at most one element, while there may be many equiv-
alences between A and B. Moreover, it is essential to the interpretation that equality evidence
is trivial. In ITT one can write a coercion function coe taking type identifications IdU(A,B) to
functionsA→ B. The image of coe in CTT runs its argument to the value ∗ and, thereby discovering
thatA and B are indeed equal, returns the identity function. If we add an element ua(E) ∈ IdU(A,B)

for every equivalence E ∈ A ≃ B, we need to explain how to run coe(ua(E)). Intuitively, coe(ua(E))
should reduce to the function underlying the equivalence E. But the problem is larger than this, for
equality must also be a congruence: for any F ∈ A→ B, there is a function cong from IdA(M,N ) to
IdB (FM, FN ). This means that an equivalence E ∈ A ≃ B induces not only an element of IdU(A,B),
but an element of IdU(A→ A,B → B), an element of IdU(IdA(M,N ), IdB (EM,EN )), and so on.
Introducing univalence adds a whole host of new elements to the identity types, and it is far from
obvious how to implement coercion for each of them.

Enter cubical type theory [Angiuli et al. 2017b; Cohen et al. 2015], a theory of abstract coercions.
Cubical type theory augments dependent type theory with a syntactic class of dimension terms

r , s, . . ., which can be either variables x ,y, z, . . . or the constants 0, 1. A termM ∈ Awhich contains
a dimension variable x is an abstract coercion, or path, between the endpoints M ⟨0/x⟩ andM ⟨1/x⟩
obtained by substituting a constant for x . A path of typesÐa type A containing a variable xÐis
actualized by coercion functions coer⇝r ′

x .A
which go from A⟨r/x⟩ to A⟨r ′/x⟩ for each pair r , r ′.

Congruence, meanwhile, is immediate: ifM ∈ A is a path in x and F ∈ A→ B is a function, then
FM is a path in x with endpoints FM ⟨0/x⟩ and FM ⟨1/x⟩. The final ingredient is a second operation,
hcom, which implements composition and inversion operations for paths. Paths can be internalized
via path types PathA(M,N ) whose canonical elements are abstracted terms λIx .P where P ∈ A

is a path whose endpoints P ⟨0/x⟩ and P ⟨1/x⟩ are equal to M and N respectively. We can apply
P ∈ PathA(M,N ) to a dimension r to get P@r ∈ A, with (λIx .P)@r reducing to P ⟨r/x⟩.

On the semantic side, the central change is that the meaning of a typeA is defined by its canonical
values in each context Ψ = (x1, . . . ,xn) of dimension variables. In other words, we simultaneously
specify the elements of A, the paths between elements of A, the paths between paths between
elements of A, and so on. This gives us the freedom, for example, to specify that paths in U

correspond to equivalences. Cohen et al. [2015] and Angiuli et al. [2018] have seen this through,
defining cubical type theories which satisfy the univalence axiom when it is expressed in terms of
paths. The former is a formal system with an accompanying canonicity proof [Huber 2016], while
the latter is a computational type theory. (We discuss other differences in Section 5).

When types are specified by their values at each dimension, what is an inductively defined type?
It is natural to imagine types generated not only by ordinary constructors but also path constructors

connecting elements. Such types are known as higher inductive types. The univalence axiom and
certain higher inductive typesÐspecified axiomatically in terms of identity typesÐform the basis of
homotopy type theory, an extension of ITT which has been used to formalize significant results
from algebraic topology and homotopy theory [Univalent Foundations Program 2013]. We will
use the term cubical inductive type (CIT) to refer to formulations in terms of path types, reserving
higher inductive type (HIT) for formulations in terms of identity types.
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Higher Inductive Types in Cubical Computational Type Theory 1:3

data A/R ∈ U where

in ∈ A→ A/R

relx ∈ (a:A) → (a′:A) → R(a,a′) → A/R [x = 0 ֒→ in(a) | x = 1 ֒→ in(a′)]

Fig. 1. A homotopy quotient as a cubical inductive type.

· · · in(−2) in(−1) in(0) in(1) in(2) · · ·

relx (−3;−1;...)

relx (−2;0;...)

relx (−1;1;...)

relx (0;2;...)

relx (1;3;...)

Fig. 2. Z mod 2 as the cubical inductive type Z/R2.

As a natural application, we can use cubical inductive types to take the quotient of a type A by
a type-valued-relation R ∈ A → A → U, a construction we will call the homotopy quotient A/R.
We define A/R as generated by elements in(M) for each M ∈ A and paths relx (M ;N ; P) for each
M,N ∈ A and P ∈ R(M,N ), with the prescription that rel0(M ;N ; P) should reduce to in(M) and
rel1(M ;N ; P) to in(N ). We introduce an informal notation for CIT definitions in Figure 1. The syntax
[x = 0 ֒→ · · · | x = 1 ֒→ · · · ] specifies a constructor’s reduction behavior when the specified
equations on dimensions hold; we call these equations the boundary of the constructor. As an
inductive type, A/R comes with an eliminator, which we can use to define functions (q:A/R) → C

by case analysis. Much like an ordinary inductive type, it requires a function for each caseÐboth
element and path cases.

As an example, we could define the type of integers mod 2 as the homotopy quotient Z/R2 where
R2(m,n) := PathZ(m + 2,n). Pictorially, this type appears as shown in Figure 2. Note, however, that
the arrows shown are the generating paths: Z/R2 contains other paths, like one from in(2) to in(−2),
which are obtained by composing or inverting generating paths. Using the eliminator for Z/R2, we
can show it is equivalent to the type bool of booleans. Thanks to univalence, we can then coerce
any result about Z/R2 to a result about bool and vice versa.
A consequence of introducing higher-dimensional structure is that we must be careful with

definitions like these. For example, suppose we had instead tried to define Z mod 2 as Z/R′
2 where

R′
2(m,n) := (k :Z) × PathZ(m + 2k,n). (We use the notation (a:A) × B and (a:A) → B for dependent

pair and function types, respectively.) While Z/R2 contains one path from 0 to 2, Z/R′
2 contains

many: we can go straight 0 to 2, or from 0 to 4 to 2, or from 0 to 6 to −2 to 2, and so on. The
result is that Z/R′

2 is not equivalent to bool, because the former contains non-trivial loops like
0 → 4 → 2 → 0. In the case of Z mod 2, it is relatively simple to find a correct definition. However,
this is not always the case. Luckily, we can obviate the issue with a more sophisticated CIT: the
0-truncation ∥−∥0, which trivializes the higher structure of a type [Univalent Foundations Program
2013, ğ7.3].

To define the 0-truncation, we will first need a circle. The circle, defined in Figure 3, is one of the
simplest cubical inductive types, generated by a point base and a loop at that point.

Intuitively, the 0-truncation ∥A∥0 of a typeA is obtained by iteratively trivializing every loopÐthat
is, every image of the circleÐin A. The definition is shown in Figure 4. We begin with a constructor
pt which includes A into ∥A∥0. Then, for every loop in ∥A∥0, i.e., every map f : S1 → ∥A∥0, we
recursively add a new element hub(f ) ∈ ∥A∥0. Finally, for each such f and element s : S1, we
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data S1 ∈ U where

base ∈ S1

loopx ∈ S1 [x = 0 ֒→ base | x = 1 ֒→ base]

base

loopx

x

Fig. 3. The circle as a cubical inductive type.

data ∥A∥0 ∈ U where

pt ∈ A→ ∥A∥0
hub ∈ (S1 → ∥A∥0) → ∥A∥0
spokex ∈ (s:S1) → (f :S1 → ∥A∥0) → ∥A∥0 [x = 0 ֒→ hub(f ) | x = 1 ֒→ f s]

Fig. 4. The 0-truncation of a type A.

data IdA ∈ A→ A→ U where

refl ∈ (a:A) → IdA(a,a)

Fig. 5. The identity type at A as an indexed inductive type.

connect hub(f ) to the point f s with a path spokex (s; f ). The spoke paths connect each point on
the loop in A to the hub, thereby trivializing the loop.

It is essential that this definition is recursive. We are trivializing loops by adding new elements,
namely hubs and spokes, which may themselves give rise to new loops in ∥A∥0. By using a recursive
constructor, however, we contract each new loop as it appears. Using the eliminators for Z/R′

2 and
∥−∥0, we can show that ∥Z/R′

2∥0 is equivalent to bool.
Even leaving the potential for path constructors aside, cubical type theory raises new questions for

the computational interpretation of inductive types. In particular, problems arise when one considers
indexed inductive types, families of types inductively generated by constructors at particular indices
[Dybjer 1994]. The paradigmatic example is ITT’s identity type, which is inductively generated by
the reflexive identification refl as shown in Figure 5. To include the identity type in cubical type
theory, we must define its coercion operator. In particular, given a path P ∈ PathA(M,N ), we can
coerce the reflexive identification refl(M) ∈ IdA(M,M) to obtain a term coe0⇝1

x .IdA(M,P@x )
(refl(M)) ∈

IdA(M,N ). There are non-trivial paths, so there must be non-trivial identifications! Just as the
generating paths of a cubical inductive type induce new paths by composition and inversion, the
generating elements of an indexed inductive type induce new elements by coercion between indices.
The design of a schema for cubical inductive types thus presents a number of challenges. First,

there is the design of the schema: what form can the arguments of a constructor take, and what
form can its boundary take? How do we derive the elimination principle from an instance of the
schema? Second, there are the computational questions: what are the canonical values of a higher
inductive type? As we have seen, the necessity of supporting coe and hcom operations implies
the existence of non-constructor values. What, then, are the values of a cubical inductive type? In
what cases can we guarantee that a value is a constructor?

Contributions. We extend the cubical computational type theory of Angiuli et al. [2017b, 2018]
with a schema for cubical inductive typeswhich includes indexed typeswithn-dimensional recursive
constructors. The language of argument types and boundary terms is specified by a small formal
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type theory. As a special case, we obtain an identity type for cubical type theory, making the
theory a model of ITT. We obtain a canonicity theorem for this theory ensuring that every element
of a cubical inductive type evaluates to a value. Such a value may be either a constructor or a
derived term generated by coercion or composition. For non-indexed types, we can exclude the
derived terms in the zero-dimensional case: any zero-dimensional element of a non-indexed cubical
inductive type evaluates to a constructor for that type.

In Section 2, we recall the cubical computational type theory from Angiuli et al. [2018], defining
the cubical programming language, typing judgments, and Kan operations coe and hcom. In Sec-
tion 3, we introduce the features of our schema by way of example, considering the cases of the
circle, 0-truncation, and identity type. We define their canonical values, then implement the Kan
operations and eliminators for the types and prove their well-typedness. In Section 4, we define
the general schema, implement the Kan operations for its instances, and formulate the elimination
principle derived from an instance. We discuss related work in Section 5 and conclude with future
work in Section 6. Complete proofs of our results can be found in our companion technical report
[Cavallo and Harper 2018], which we henceforth cite as [TR].
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2 CUBICAL COMPUTATIONAL TYPE THEORY

In this section, we recall the framework of cubical computational type theory presented by Angiuli
et al. [2018]. A computational type theory has two parts: an untyped programming language and a
type system on that language which specifies types as partial equivalence relations (PERs) on the
set of values. An element of a type is a term which evaluates to a value of that type. In the cubical
setting, we add a sort of dimension terms to the language. The type system is then parameterized
by a context of dimension variables. The elements of a type are those which evaluate to values of
that type in a way which interacts coherently with dimension variable substitution. Finally, types
are required to support the Kan operations, coe and hcom, which account for composition of and
coercion along paths.

2.1 Cubical Programming Language

A cubical programming language consists of two sorts: dimensions r and termsM . The latter sort
includes both terms which are łelementsž and those which are łtypes;ž these will be distinguished
by the type system.

r ::= x | 0 | 1

M ::= (a:M) → M | λx .M | app(M,M) | PathM (M,M) | λIx .M | M@r | · · ·

We use either
−⇀
Mi orM to denote a list of terms. We impose a deterministic operational semantics

on closed terms by way of judgmentsM 7−→ M ′ (M steps toM ′) andM val (M is a value). We use
7−→∗ for the transitive closure of 7−→, and writeM ⇓ V (M evaluates to V ) to mean thatM 7−→∗ V

with V val. While the operational semantics concerns terms without term variables, they can
contain dimension variables. For example, Figure 6 shows the operational semantics of the circle
constructors base and loop, which specifies that loopx is a value path with endpoints which reduce

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 1. Publication date: January 2019.



1:6 Evan Cavallo and Robert Harper

base val loopx val

ε ∈ {0, 1}

loopε 7−→ base

Fig. 6. Operational semantics of the circle constructors

to base. We writeM tm [Ψ] to mean that FD(M) ⊆ Ψ, FD(M) being the set of dimension variables
free inM .

We writeψ : Ψ′ → Ψ for a dimension variable substitution which takesM tm [Ψ] toMψ tm [Ψ′].
We refer to theseMψ as cubical aspects ofM . The operational semantics need not be stable under
substitution:M 7−→ M ′ does not implyMψ 7−→ M ′ψ , nor doesM val implyMψ val. For example,
loopx is a value, but loopx ⟨0/x⟩ and loopx ⟨1/x⟩ step.
We will start with the cubical language used by Angiuli et al. [2017c], which includes standard

operators such as λ-abstraction and application, and extend it with new operators for inductive
types as needed. The theorems we prove about it will hold for any language which extends the
fragment we present. One could instead use Church-style encodings, though some extension to the
λ-calculus is needed to accommodate dimensions.

2.2 Cubical Type Systems

Given an untyped programming language, we can define a type system over it in which types
specify the evaluation behavior of programs. In Nuprl-style semantics, the denotation of a type A
is a PER JAK on values. We say thatV is a canonical value in A if JAK(V ,V ), and thatV ,V ′ are equal
canonical values if JAK(V ,V ′); the use of PERs is a convenience to simultaneously carve out a set of
values and impose an equivalence relation upon it. A termM is in A if it evaluates to a canonical
value in A, andM,M ′ are equal in A if they evaluate to equal canonical values in A.

In the cubical setting, the elements of a type Amay contain dimension variables, so we stratify
its denotation as a family of PERs JAKΨ indexed by dimension contexts Ψ = (x1, . . . ,xn). We write
∅ for the empty context. At each Ψ, JAKΨ relates values V tm [Ψ], specifying the equal canonical
values in that context. Actually, this is the special case where the term A itself is free of dimension
variables. In general, the denotation of a type A in context Ψ is a family of PERs JAKψ indexed
by substitutions ψ : Ψ′ → Ψ into the context Ψ. For each ψ : Ψ′ → Ψ, JAKψ specifies the values
of the aspect Aψ in context Ψ′. We refer to such a substitution-indexed family of relations as a
Ψ-relation (in this case, a value Ψ-PER). We write α , β, . . . for Ψ-relations. We abbreviate αψ (M,M)

as αψ (M) and αid(M,M
′) as α(M,M ′). For ∅-relations, we write αΨ instead of αψ , there being a

unique substitutionψ : Ψ → ∅. If α is a Ψ-relation andψ : Ψ′ → Ψ, we write αψ for the Ψ′-relation
(αψ )ψ ′ := αψψ ′ .
As in the zero-dimensional case, a value Ψ-PER α extends by evaluation to a Ψ-PER on terms.

Here, however, we don’t want to include every term which evaluates to a value in α . Consider, for
example, the following pathological term badr :

badx 7−→ loopx

ε ∈ {0, 1}

badε 7−→ 17

(This term can be encoded using the fhcom terms we introduce in Section 3.1.) Although badx

evaluates to the canonical element loopx of S1, we do not want to include badx as an element of S1,
because its aspects badx ⟨ε/x⟩ do not behave like elements of S1. More insidiously, we may have
a term which behaves as different elements of S1 depending on the order in which we subject it
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Higher Inductive Types in Cubical Computational Type Theory 1:7

to dimension substitutions and evaluation. To exclude such pathological terms, we introduce the
following definition.

Definition 2.1. For any valueΨ-relationα , define aΨ-relationTm(α) by saying thatTm(α)ψ (M,M
′)

holds forψ : Ψ′ → Ψ when for everyψ1 : Ψ1 → Ψ
′ andψ2 : Ψ2 → Ψ1, we have

Mψ1 ⇓ V1 V1ψ2 ⇓ V2 Mψ1ψ2 ⇓ V12
M ′ψ1 ⇓ V

′
1 V ′

1ψ2 ⇓ V
′
2 M ′ψ1ψ2 ⇓ V

′
12

for some V1,V2,V12,V
′
1 ,V

′
2 ,V

′
12 such that αψψ1ψ2

(W ,W ′) for everyW ,W ′ ∈ {V2,V
′
2 ,V12,V

′
12}.

Intuitively, Tm(α)ψ (M,M
′) holds when interleaving any pair of substitutionsψ1,ψ2 with evalua-

tion of the terms M,M ′ in any order gives the same result up to α . When α is a PER, Tm(α) is a
PER as well.
We will not work with this definition directly. Instead, we will present an interface of lem-

mas. First, note that if Tm(α)ψ (M,M
′), then in particular M and M ′ evaluate to values related

by α . Moreover, Tm(α) is always stable, where a Ψ-relation β is stable when βψ (M,M
′) implies

βψψ ′(Mψ ′,M ′ψ ′) for all ψ ′,M,M ′. The value Ψ-relations we use will typically not be stable, as

valuehood itself is not stable. For example, we will define JS1K so that JS1KΨ(base, base) for every Ψ

and JS1KΨ,x (loop
x , loopx ) for every Ψ,x . However, we will not have JS1KΨ(loop

0, loop0), as loop0

is not even a value.
To prove that Tm(α) relates some pair of values, we make use of the following lemma.

Lemma 2.2 (Introduction [TR, A.2]). Let α be a value Ψ-PER. If for every ψ : Ψ′ → Ψ, either

αψ (Mψ ,M
′ψ ) or Tm(α)ψ (Mψ ,M

′ψ ), then Tm(α)(M,M ′).

In particular, if αψ (Mψ ,M
′ψ ) for every ψ , then Tm(α)(M,M ′). Thus, for example, we will have

Tm(JS1K)Ψ(base, base), because every aspect of base is itself base. We say α is value-coherent if it
satisfies the stronger condition that α ⊆ Tm(α). We will require this property of all types; it can
fail, for example, if α contains loopx but not base.

To prove reduction rules, we use the following analogue of a head expansion lemma.

Lemma2.3 (Coherent expansion, [TR, A.3]). Letα be a valueΨ-PER and letM,M ′ tm [Ψ]. If for every

ψ : Ψ′ → Ψ, there existsM ′′ such thatMψ 7−→∗ M ′′ and Tm(α)ψ (M
′′,M ′ψ ), then Tm(α)(M,M ′).

In particular, if Mψ 7−→ M ′ψ for all ψ and Tm(α)(M ′) holds, then Tm(α)(M,M ′) holds. Thus,
for example, we have Tm(JS1K)Ψ(loop

ε , base) for ε ∈ {0, 1}. As Tm(JS1K) is a PER, this implies
Tm(JS1K)Ψ(loop

ε ) for ε ∈ {0, 1}. Using Lemma 2.2, we can then prove Tm(JS1K)Ψ(loop
r ) for any

r . This is the typical style of argument for proving Tm is closed under path constructors: the
introduction rules for a constructor’s boundary are used with coherent expansion to prove the
introduction rule for the constructor itself.

A candidate cubical type system carves out a universe of Ψ-PERs and gives them syntactic names.
Precisely, a candidate is a family τ = (τΨ)Ψ of three-place relations τΨ(A0,B0,φ) relating values
A0,B0 tm [Ψ] and (ordinary) PERs φ on values V ,V ′ in context Ψ. As with Tm in the case of value
Ψ-PERs, a candidate induces relations PTy(τ )Ψ(A,B,α) on terms A,B tm [Ψ] and value Ψ-PERs
α . We will omit the definition, which is analogous to that of Tm, but note that PTy(τ )Ψ(A,B,α)
implies A ⇓ A0 and B ⇓ B0 with τΨ(A0,B0,αid) as well as PTy(τ )Ψ′(Aψ ,Bψ ,αψ ) for anyψ : Ψ′ → Ψ.
A candidate τ is a cubical type system when a given A0,B0 are related by τΨ to at most one φ, each
τΨ(−,−,φ) is a PER, and PTy(τ )Ψ(A,B,α) implies that α is value-coherent. We then write JAK for
the unique α with PTy(τ )Ψ(A,A,α) when it exists. Angiuli et al. [2018] show how to construct a
cumulative hierarchy of cubical type systems, each of which is closed under standard type formers
and appears as a universe type in its successor.
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1:8 Evan Cavallo and Robert Harper

Given a cubical type system τ , we can define type equality and element equality judgments.

τ |= A � A′ typepre [Ψ] :⇔ ∃α . PTy(τ )Ψ(A,A
′,α),

τ |= M � M ′ ∈ A [Ψ] :⇔ ∃α . PTy(τ )Ψ(A,A
′,α) ∧ Tm(α)(M,M ′).

Note that each of these judgments is stable under dimension substitution. We will omit the prefix
τ |= when the cubical type system is understood. We abbreviate A � A typepre [Ψ] as A typepre [Ψ]

andM �M ∈ A [Ψ] asM ∈ A [Ψ]. The open judgments are defined by functionality: open terms are
equal when they send equal closing substitutions to equal results. As in Kripke semantics, we must
also quantify over dimension substitutions. For example, we define a :A ≫ B�B′ typepre [Ψ] to hold

when Bψ [M/a] � B′ψ [M ′/a] typepre [Ψ
′] holds for everyψ : Ψ′ → Ψ andM � M ′ ∈ Aψ [Ψ′]. We

leave it to the reader to infer the definitions of context equality Γ� Γ′ ctxpre [Ψ], equality in contexts

M �M
′
∈ Γ [Ψ], and the general open judgments Γ ≫ A�A′ typepre [Ψ] and Γ ≫ N � N ′ ∈ A [Ψ].

We will use the notation γ : Γ to refer to the variables in a context Γ as a group.
Finally, we can use this notation to concisely state an elimination lemma for Tm. This lemma

allows us to verify that an eager operator is well-typed on terms in Tm(α) by checking that it is
well-typed on values in α .

Definition 2.4. We say that a ⊢ N tm [Ψ] (a term N with one free variable a) is eager if for all
ψ : Ψ′ → Ψ andM tm [Ψ′], we have Nψ [M/a] ⇓W iff there existsV tm [Ψ′] such thatM ⇓ V and
Nψ [V /a] ⇓W .

Lemma 2.5 (Elimination [TR, A.2]). Let A typepre [Ψ] and a : A ≫ B typepre [Ψ], and let a ⊢

N ,N ′ tm [Ψ] be eager. Suppose that for every ψ : Ψ′ → Ψ and JAKψ (V ,V
′), we have Nψ [V /a] �

N ′ψ [V ′/a] ∈ Bψ [V /a] [Ψ′]. Then a :A ≫ N � N ′ ∈ B [Ψ].

2.3 Kan Types

We now have a cubical language and a notion of a pretype classifying values in this language.
Finally, we distinguish (Kan) types as those pretypes which support the so-called Kan operations
coe and hcom, which specify (a) the action of a path between types as a coercion, and (b) the means
for composing paths to form other paths.
The first Kan operation is the coercion operation coe. The coe-Kan conditions require that for

every r , r ′, andM ∈ A⟨r/x⟩ [Ψ], we have coer⇝r ′

x .A
(M) ∈ A⟨r ′/x⟩ [Ψ]. Moreover, a degenerate coe

must be trivial: coer⇝r
x .A

(M) �M ∈ A⟨r/x⟩ [Ψ]. It is a consequence of these conditions that the map

coe0⇝1
x .A

is an equivalence with inverse coe1⇝0
x .A

. To give an idea of why this is true, observe that the

path shown below connects any input M ∈ A⟨0/x⟩ [Ψ] to the result coe1⇝0
x .A

(coe0⇝1
x .A

(M)) of one
round trip; a similar path works for the other round trip.

M coe1⇝0
x .A

(coe0⇝1
x .A

(M))

0 1

coe
y⇝0
x .A

(coe
0⇝y

x .A
(M))

y

Thismeans that every path P ∈ PathU(A,B) [Ψ] gives rise to an equivalence between its endpointsA
and B. The univalence axiom asserts that this path-to-equivalence operation is itself an equivalence;
its computational interpretation is given in Angiuli et al. [2018], but we will not need it here.
The second Kan operation is the homogeneous composition operation hcom. In its most general

form, hcom takes a term called a cap and adjusts certain aspects of that term along a set of lines called
a tube. The general case encompasses the many ways of composing and inverting of n-dimensional
cubes and moreover enables us to prove properties of these operations, such as associativity of
composition up to a path.
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To state the hcom-Kan conditions, we first have to introduce constraints, which are equations

r = r ′ on dimension terms. We write ξ for constraints and Ξ or
−⇀
ξi for lists of constraints. We write

|= Ξ to mean that every constraint in Ξ is true, i.e, that each is of the form r = r for some r . We
define restricted judgments A � A′ typepre [Ψ | Ξ] and M � M ′ ∈ A [Ψ | Ξ] expressing that an

equation holds on the part of the context Ψ where the constraints are true:

A � A′ typepre [Ψ | Ξ] :⇔ ∀ψ : Ψ′ → Ψ. (|= Ξψ → Aψ � A′ψ typepre [Ψ
′])

M � M ′ ∈ A [Ψ | Ξ] :⇔ ∀ψ : Ψ′ → Ψ. (|= Ξψ → Mψ � M ′ψ ∈ Aψ [Ψ′]

A tube is a list (ξ1 ֒→ y.N1, . . . , ξn ֒→ y.Nn) of constraints ξi paired with linesy.Ni (terms in an

abstracted dimension y). A tube
−−−−−−−−−⇀
ξi ֒→ y.Ni is well-typed in A at Ψ when Ni � Nj ∈ A [Ψ,y | ξi , ξ j ]

holds for each i, jÐin particular, Ni ∈ A [Ψ,y | ξi ] for each i . These equations ensure that the terms
Ni agree where the constraints overlap, so that a tube is a łpartial cubež defined on their union.
Finally, we impose a validity restriction on the shape of tubes. We say a constraint list Ξ is valid

when there is some r such that either (r = r ) ∈
−⇀
ξi or both (r = 0) ∈ Ξ and (r = 1) ∈ Ξ. We require

tubes to have valid constraint sets, which will allow us to prove a stronger canonicity theorem in
Section 4.4.

We say that a term M ∈ A [Ψ] is a cap for
−−−−−−−−−⇀
ξi ֒→ y.Ni at r when M � Ni ⟨r/y⟩ ∈ A [Ψ | ξi ] for

each i . Intuitively, this meansM fits into the tube at position r . As an example, the term loopx is a
cap for the tube (x = 0 ֒→ y.base,x = 1 ֒→ y.loopy ) at 0:

x

y
· ·

· ·

loopx

base loopy

The hcom operator takes a valid tube
−−−−−−−−−⇀
ξi ֒→ y.Ni and a cap M at a given r and produces a cap

at any r ′. Syntactically, the hcom-Kan conditions require that hcomr⇝r ′

A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) ∈ A [Ψ]

with hcomr⇝r ′

A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) � Ni ⟨r

′/y⟩ ∈ A [Ψ | ξi ] for all i . As with coe, we also require that

degenerate hcoms trivialize: hcomr⇝r
A (M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni )�M ∈ A [Ψ]. Thus, in our previous example,

we have the following composite:

x

y
· ·

· ·

loopx

base loopy

hcom0⇝1
A (loopx ; · · · )

hcom
0⇝y

A
(loopx ; · · · )

The term in the center is a square whose boundary is given by the surrounding paths. In this example,
the term hcom0⇝1

A (loopx ; · · · ) is the result of composing the paths loopx and loopy together. In

general, a two-dimensional hcom0⇝1
A like this one composes (1) the inverse of the left face, (2) the

top face, and (3) the right face into a single path. In this case, the left face is degenerate, so we
obtain the ordinary composition of two paths. By leaving the top and right face degenerate, we
could instead obtain the inverse of the left face.

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 1. Publication date: January 2019.



1:10 Evan Cavallo and Robert Harper

(∀i) ̸|= ξi r , r ′

fhcomr⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) val

(∀i) ̸|= ξi r = r ′

fhcomr⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) 7−→ M

|= ξi (∀j < i) ̸|= ξ j

fhcomr⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) 7−→ Ni ⟨r

′/y⟩

Fig. 7. Operational semantics of fhcom.

Equal pretypes A � A′ typepre [Ψ] are equally Kan, written A � A′ typeKan [Ψ], when each of

their aspectsAψ �A′ψ typepre [Ψ
′] satisfy the Kan conditions with equal implementations of hcom

and coe.

3 CUBICAL INDUCTIVE TYPES BY EXAMPLE

Wewill work our way up to the general case with a series of examples, each of which introduces new
components of the machine. In Section 3.1, we define the circle and implement its Kan operations
and eliminator. The circle is simplistic in a few ways: it takes no parameters or indices and its
constructors are non-recursive. In Section 3.2, we upgrade to the 0-truncation, which takes a type
parameter (but not an index) and has recursive constructors. In Section 3.3, we cover the identity
type, which has no higher constructors but is indexed.

3.1 Circle

As shown in Figure 3, the circle S1 is generated by a point base and a path loop connecting that
point to itself. We define the operational semantics of the constructors as in Figure 6. For S1 to
be Kan, however, it must contain other values: we can, for example, invert loop or compose it
with itself any number of times to obtain new paths. In this case, we do not have to worry about
satisfying the coe-Kan conditions: as S1 contains no dimension variables, we can define coer⇝r ′

x .S1
to

be the identity function. However, we do need to add values to account for hcom. For this purpose,
we introduce the fhcom operator, the free or formal implementation of hcom.

As shown in Figure 7, fhcom takes the same arguments as hcom with the exception of the

type subscript. When one of the tube constraints ξi holds, fhcom
r⇝r ′(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni ) steps to the

corresponding tube face Ni ⟨r
′/y⟩; when r = r ′, it steps to the capM . Otherwise, it is simply a value.

We can use fhcom to implement hcom for any type at the cost of adding new values to its PER.
We define a monotone operator Fhcom on Ψ-relations which takes α to the Ψ-relation of fhcom
values built from arguments in Tm(α):

Fhcom(α)ψ := {(fhcomr⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ), fhcom

r⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.N ′

i )) | Tm(α)ψ (M,M
′) ∧ · · · },

where the omitted conditions prescribe that
−−−−−−−−−⇀
ξi ֒→ y.Ni and

−−−−−−−−−⇀
ξi ֒→ y.N ′

i are equal tubes in Tm(α)

with equal capsM andM ′ at r . As with the corresponding Kan condition, we require the list
−⇀
ξi of

tube constraints in an fhcom to be valid. We define the circle as a least fixed-point of ∅-relations:
JS1K := µα .Circle(α) where Circle is the monotone operator

Circle(α)Ψ := {(base, base)} ∪ {(loopx , loopx ) | x ∈ Ψ} ∪ Fhcom(α)Ψ .

Using Lemmas 2.2 and 2.3, we can show that Tm(JS1K) contains base and loopr and is closed under
fhcom terms, which implies in particular that JS1K is value-coherent. At this point, it is trivial to
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implement coex .S1 and hcomS1 :

coer⇝r ′

x .S1
(M) 7−→ M hcomr⇝r ′

S1
(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni ) 7−→ fhcomr⇝r ′(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni )

As we have added elements to S1 besides the generators, we may wonder if the type we defined
is really a circle: can we implement an elimination rule? We should be able to define a function
from the circle into a type family C by providing the base and loop cases, per the rule below.

M ∈ S1 [Ψ] N ∈ C[base/a] [Ψ]

P ∈ C[loopz/a] [Ψ, z] (∀ε ∈ {0, 1}) P � N ∈ C[loopz/a] [Ψ | z = ε]

S1-elima .C (M ;N , z.P) ∈ C[M/a] [Ψ]

The eliminator S1-elima .C (M ;N , z.P) shown above takes an element of the circle, a termN providing
the output for the caseM = base, and a term z.P in one dimension variable providing the output
for the case M = loopz . Note the final łcoherencež premise of this rule, which ensures that the
endpoints of the loop case z.P line up with the base case N . It is clear how S1-elim ought to step
applied to base and loop terms:

S1-elima .C (base;N , z.P) 7−→ M S1-elima .C (loop
x ;N , z.P) 7−→ P ⟨x/z⟩

From Lemma 2.3, we can see immediately that S1-elima .C (base;N , z.P) �M ∈ C[base/a] [Ψ]. To
prove the corresponding rule for loop,

S1-elima .C (loop
r ;N , z.P) � P ⟨r/z⟩ ∈ C[loopr /a] [Ψ],

we make essential use of the łcoherencež premise. To apply Lemma 2.3, we need to know that
S1-elima .C (loop

r ;N , z.P)ψ steps to something equal to P ⟨r/z⟩ψ for any substitutionψ . When rψ is
a variable, this is immediate. When rψ ∈ {0, 1}, we have

S1-elima .C (loop
r ;N , z.P)ψ 7−→ S1-elima .C (base;N , z.P)ψ 7−→ Nψ ,

a reduct which is equal to P ⟨r/z⟩ψ by the łcoherencež premise.
Finally, we have to define the behavior of S1-elim on fhcom terms. For this, we can take advantage

of the fact that C is a family of types and so has Kan structure of its own. Essentially, we want to
map fhcoms in S1 to hcoms in C . Because we are defining a dependent map, the solution is a bit
more complex than this: we need to define heterogeneous composition, or com [Angiuli et al. 2017c,
Theorem 44].

Lemma 3.1 (Heterogeneous composition). Define

comr⇝r ′

y .A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) := hcomr⇝r ′

A ⟨r ′/y ⟩(coe
r⇝r ′

y .A (M);
−−−−−−−−−−−−−−−−−−−⇀
ξi ֒→ y.coe

y⇝r ′

y .A
(Ni )).

For A typeKan [Ψ,y], this definition satisfies the following rules:

M ∈ A⟨r/y⟩ [Ψ] (∀i, j) Ni � Nj ∈ A [Ψ,y | ξi ] (∀i) Ni ⟨r
′/y⟩ � M ∈ A⟨r/y⟩ [Ψ | ξi , ξ j ]

comr⇝r ′

y .A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) ∈ A⟨r

′/y⟩ [Ψ]

comr⇝r ′

y .A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) � M ∈ A⟨r ′/y⟩ [Ψ | r = r ′]

comr⇝r ′

y .A (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni ) � Ni ⟨r

′/y⟩ ∈ A⟨r ′/y⟩ [Ψ | ξi ]

Heterogeneous composition combines the functions of coe and hcom: it carries the capM across
the type line y.A while simultaneously adjusting by tube faces ξi ֒→ y.Ni which extend along the
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pt(M) val hub(F ) val

spokex (F ;M) val spoke0(F ;M) 7−→ hub(F ) spoke1(F ;M) 7−→ FM

Fig. 8. Operational semantics of the 0-truncation constructors

type line. With this definition in hand, we can specify the operational semantics of S1-elim on an
fhcom term.

r , r ′ (∀i) ̸|= ξi Fy := fhcomr⇝y (M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni )

S1-elima .C (fhcom
r⇝r ′(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni );N , z.P) 7−→

comr⇝r ′

y .C[Fy/a](S
1-elima .C (M ;N , z.P);

−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
ξi ֒→ y.S1-elima .C (Ni ;N , z.P))

Let us check that this definition makes type sense. The recursive call S1-elima .C (M ;N , z.P) lands in
C[M/a], which is equal toC[Fy/a]⟨r/y⟩ because F r is equal toM . Likewise, S1-elima .C (Ni ;N , z.P)
lands in C[Ni/a], which is equal to C[Fy/a] under ξi because F

y is equal to Ni under ξi . By
Lemma 3.1, composing these terms gives a result in C[Fy/a]⟨r ′/y⟩, which is precisely the desired

type C[fhcomr⇝r ′(M ;
−−−−−−−−−⇀
ξi ֒→ y.Ni )/a].

Note that the motive annotation a.C on the eliminator is not present for type-checking purposes,
but rather is essential to the operational semantics: the eliminator defers to the motive to handle
fhcom values.

3.2 0-Truncation

The 0-truncation, shown in Figure 4, is a parameterized inductive type: we want to construct
∥A∥0 typeKan [Ψ] for everyA typeKan [Ψ]. Unlike S

1, the term ∥A∥0 can contain dimension variables
if A does, so we can no longer get away with a degenerate definition of coe.
Besides coercion, the definition of truncation closely follows that of the circle. We define the

operational semantics of the 0-truncation constructors in Figure 8: a constructor steps when a
boundary constraint holds and is a value otherwise. The Ψ-PER J∥A∥0K is defined as the least
closed under constructor values and fhcom values, and we can show that Tm(J∥A∥0K) validates the
expected introduction rules. Once again, we implement hcom via fhcom.
Now, we come to coe. For every line z.∥A∥0 and endpoints r and r ′, we must define the func-

tion coer⇝r ′

z . ∥A∥0
from ∥A∥0⟨r/z⟩ to ∥A∥0⟨r

′/z⟩. We will do this by evaluating the input element of

∥A∥0⟨r/z⟩ and analyzing the structure of its value, using the Kan structures on S1 and A at the
leaves to coerce. (For illustrative purposes, we will forget for the moment that coercion in S1 is the
identity function.) First, we define coe on pt terms in the natural way, using the Kan structure onA:

coer⇝r ′

z . ∥A ∥0
(pt(M)) 7−→ pt(coer⇝r ′

z .A (M))

Given M ∈ A⟨r/z⟩ [Ψ], we have coer⇝r ′

z .A
(M) ∈ A⟨r ′/z⟩ [Ψ], so we can apply pt to get a term in

∥A∥0⟨r
′/z⟩. For hub, we similarly push the coe into the argument:

coer⇝r ′

z . ∥A∥0
(hub(F )) 7−→ hub(coer⇝r ′

z .S1→∥A ∥0
(F ))
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In this case, we reduce to a coe in the compound type S1 → ∥A∥0, which is itself defined in terms
of coe in S1 and ∥A∥0. Coercion for function types is defined in [Angiuli et al. 2018, ğ5.3]; for our
purposes, we do not need to know the definition.
Finally, we have the path constructor spokex . The rub will be to define the reduction for

coer⇝r ′

z . ∥A ∥0
(spokex (M ; F )) in a coherent way: when we try to show it is well-typed with Lemma 2.3,

we will need its reduct’s x = 0 face to agree with coer⇝r ′

z . ∥A ∥0
(hub(F )) and its x = 1 face to agree with

coer⇝r ′

z . ∥A ∥0
(FM). As a first cut, we might try to define

coer⇝r ′

z . ∥A∥0
(spokex (M ; F ))

?
7−→ spokex (coer⇝r ′

z .S1
(M); coer⇝r ′

z .S1→∥A∥0
(F ))

However, consider the x = 1 face of this definition. If we substitute 1 for x on the left hand side, we
obtain a term which reduces to coer⇝r ′

z . ∥A∥0
(FM). If, on the other hand, we substitute 1 for x on the

right hand side, we reduce to coer⇝r ′

z .S1→∥A∥0
(F )(coer⇝r ′

z .S1
(M)). These are not necessarily equal; coe

does not commute with function application in general.
Luckily, coe does commute with all operators up to a path. Consider the case of an arbitrary func-

tionG ∈ B → C . Given N ∈ B, we can construct a y-line between coer⇝r ′

z .C
(GN ) andG(coer⇝r ′

z .B
(N ))

like so:

coer⇝r ′

z .C
(GN ) G(coer⇝r ′

z .C
(N ))

r r ′

coe
y⇝r ′

z .C
(G(coe

r⇝y

z .B
(N )))

y

When y = r , the inner coe in the term coe
y⇝r ′

z .C
(G(coe

r⇝y

z .B
(N ))) simplifies and we are left with

coer⇝r ′

z .C
(GN ); when y = r ′, the outer coe simplifies and we have G(coer⇝r ′

z .C
(N )). We can think of

the interpolating term as coercing N from r to an intermediate point y, applying the functionG,
and then coercing GN the rest of the way from y to r ′.

Instantiating this argument with function application, we see that our attempted definition has
the correct boundary up to a path but not up to equality. This is precisely the use case for hcom:
we want to adjust the boundary of a term by a tube. Using an fhcom (i.e., an hcom in ∥A∥0), we
thus define

T :=



x = 0 ֒→ y.coer⇝r ′

z . ∥A ∥0
(hub(F )),

x = 1 ֒→ y.coe
y⇝r ′

z . ∥A ∥0
(coe

r⇝y

z .S1→∥A∥0
(F )(coe

r⇝y

z .S1
(M)))


coer⇝r ′

z . ∥A ∥0
(spokex (M ; F )) 7−→ fhcomr ′⇝r (spokex (coer⇝r ′

z .S1
(M); coer⇝r ′

z .S1→∥A∥0
(F ));T )

The x = 0 face is a constant line, since no boundary correction is necessary there, while the x = 1
face slides the coercion out of the function application.
Finally, we have to handle the case of fhcom values. Here, we can simply push the coe inside:

coer⇝r ′

z . ∥A ∥0
(fhcoms⇝s ′(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni )) 7−→ fhcoms⇝s ′(coer⇝r ′

z . ∥A ∥0
(M);

−−−−−−−−−−−−−−−−−−−−⇀
ξi ֒→ y.coer⇝r ′

z . ∥A ∥0
(Ni ))

It is straightforward to check that this definition has all the right faces. This completes the definition
of coe in ∥A∥0.
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Our final task is to define the eliminator for ∥A∥0. We will follow the same template as for the
circle, but now we must account for recursive constructors. We aim to satisfy the following rule:

Γspoke := (s : S1, f : S1 → ∥A∥0, rf : (s:S
1) → C[f s/t])

M ∈ ∥A∥0 [Ψ] a :A ≫ P ∈ C[pt(a)/t] [Ψ]

f : S1 → ∥A∥0, rf : (s:S
1) → C[f s/t] ≫ H ∈ C[hub(f )/t] [Ψ]

Γspoke ≫ O ∈ C[spokez (s; f )/t] [Ψ, z] Γspoke ≫ O � H ∈ C[spokez (s; f )/t] [Ψ, z | z = 0]
Γspoke ≫ O � rf s ∈ C[spoke

z (s; f )/t] [Ψ, z | z = 1]

trunc-elimt .C (M ;a.P , f .H , z.s . f .O) ∈ C[M/a] [Ψ]

The pt case P is completely standard. For constructors which take the recursive argument f : S1 →
∥A∥0, we give access to the results rf : (s:S1) → C[f s/t] of the recursive call: rf s stands for the

result of calling trunc-elim on f s for each s : S1. As with the circle, we require that the endpoints
of the path case line up with the corresponding boundary cases. Here, this means that the z = 0
endpoint of the spokez (s; f ) case O must line up with the hub case H , while the z = 1 endpoint
must be equal to the result rf s of the recursive call on f s . The operational semantics for trunc-elim,
which validates the above rule, again steps to the appropriate clause in each constructor case and
uses a com in C to cover the fhcom case.
By definition, the type ∥A∥0 satisfies a canonicity theorem: any M ∈ ∥A∥0 [Ψ] evaluates to

a value which is either a constructor (pt,hub, or spoke) or an fhcom. However, we also get a
stronger guarantee if we only consider zero-dimension terms, that is, M ∈ ∥A∥0 [∅]. We have

required that the set of constraints
−⇀
ξi in an fhcom tube is valid: there is some r such that either

(r = r ) ∈
−⇀
ξi or both (r = 0) ∈

−⇀
ξi and (r = 1) ∈

−⇀
ξi . In an empty dimension context, r must be

either 0 or 1, in which case we know that one of the equations in
−⇀
ξi is true. Thus, any fhcom

in an empty dimension context reduces. It follows that M ∈ ∥A∥0 [∅] specifically evaluates to a
constructor value. Moreover, neither hub nor spoke can be a value in an empty dimension context.
We conclude that anyM ∈ ∥A∥0 [∅] evaluates to some pt(N ): we can extract elements of A from
zero-dimensional elements of ∥A∥0.

3.3 Identity Types

As our final example, we consider the identity type family specified in Figure 5, a type which
has no path constructors but nonetheless requires new values in the higher-dimensional setting.
While for the circle and truncation we needed new values to implement hcom, for the identity
type we will need new values for coe. The new complication arises because the identity type is
an indexed inductive type: a family IdA(−,−) with a constructor refl which introduces elements
at a particular index. These are distinct from parameterized inductive types, like ∥−∥0, whose
constructors introduce elements uniformly at every index. In the indexed case, we need to account
for coercion between indices of the family: if P ∈ PathA(M,N ) [Ψ], then to what should the term
coer⇝r ′

z .IdA(M,P@z)
(refl(M)) ∈ IdA(M,N ) [Ψ] evaluate?

To define the denotation of indexed identity types, we need to simultaneously define a family of
Ψ-relations as the least closed under certain operators. We thus introduce a notion of ∆-indexed
Ψ-relations, where ∆ is a context of Kan types.

Definition 3.2. Let ∆ typeKan [Ψ]. A ∆-indexed Ψ-relation α = α−[−] consists of a Ψ
′-relation

αψ [I ] for everyψ : Ψ′ → Ψ and I ∈ ∆ψ ′ [Ψ′], satisfying the following conditions.

(1) αψ [I ]ψ
′
= αψψ ′[Iψ ′] for everyψ ′ : Ψ′′ → Ψ

′,

(2) αψ [I ] = αψ [I
′
] for every I � I

′
∈ ∆ψ [Ψ′].
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I , ∅ r , r ′

fcoer⇝r ′

z .I
(P) val

I , ∅

fcoer⇝r

z .I
(P) 7−→ P fcoer⇝r ′

z .∅ (P) 7−→ P

Fig. 9. Operational semantics of fcoe.

Note that a ∆-indexed Ψ-relation α is completely determined by the relations αψ [I ]id.

We will define the identity family IdA as the least (A,A)-indexed Ψ-relation closed under refl
values, fhcom values, and finally fcoe values which will account for coercion between indices of
a family. The operational semantics of fcoe are defined in Figure 9. The operator takes a line of

indices z.I , endpoints r , r ′, and an argumentM to coerce from index I ⟨r/z⟩ to I ⟨r ′/z⟩ of a family.
As with fhcom, fcoe reduces when it is degenerate and is a value otherwise.

We define an operator on ∆-indexed Ψ-relations taking α to the PER of fcoe values built on α :

Fcoe(α)ψ [I ] :=




(
fcoer⇝r ′

z . J
(M), fcoer⇝r ′

z . J
′ (M ′)

)
������

J � J
′
∈ ∆ψ [Ψ′, z]

J ⟨r ′/z⟩ � I ∈ ∆ψ [Ψ′]

Tm(Fcoe(α)ψ [J ⟨r/z⟩])(M,M
′)




We then define JIdA(M,N )K := β[M,N ], where β is the least fixed point of the operator Id on
(A,A)-indexed Ψ-relations given by

Id(α)ψ [M,N ] := {(refl(Q), refl(Q ′)) | M � N � Q � Q ′ ∈ Aψ [Ψ′]}

∪ Fhcom(αψ [M,N ]) ∪ Fcoe(α)ψ [M,N ].

Adding fcoe covers coercion between the indices of the family IdA(−,−), but we still need
to account for coercions coer⇝r ′

z .IdA(M,N )
where z occurs in the type argument A. To make up the

difference, we introduce an auxiliary operator, the total space coercion tcoer⇝r ′

z .A
, which we intend

to satisfy the following typing rules:

P ∈ IdA ⟨r/z ⟩(M,N ) [Ψ]

tcoer⇝r ′

z .A (P) ∈ IdA ⟨r ′/z ⟩(coe
r⇝r ′

z .A (M), coer⇝r ′

z .A (N )) [Ψ]

tcoer⇝r
z .A (P) � P ∈ IdA ⟨r/z ⟩(M,N ) [Ψ]

Total space coercion moves an element P along a path z.A in the type argument of Id, carrying
the endpoint indicesM,N ∈ A⟨r/z⟩ of the original path along via coercion. The name comes from
homotopy theory: the total space is the pair type (a,a′:A) × IdA(a,a

′), and tcoe takes the triple

⟨M,N , P⟩ ∈ ((a,a′:A) × IdA(a,a
′))⟨r/z⟩

to the triple

⟨coer⇝r ′

z .A (M), coer⇝r ′

z .A (N ), tcoer⇝r ′

z .A (P)⟩ ∈ ((a,a′:A) × IdA(a,a
′))⟨r ′/z⟩.

Once we have implemented tcoe, we can combine it with fcoe to implement coe:

coer⇝r ′

z .IdA(M,N )
(P) 7−→ fcoer⇝r ′

z .(coez⇝r ′

z .A
(M ),coez⇝r ′

z .A
(N ))

(tcoer⇝r ′

z .A (P)).

The inner tcoe produces an element of IdA ⟨r ′/z ⟩(coe
r⇝r ′

z .A
(M ⟨r/z⟩), coer⇝r ′

z .A
(N ⟨r/z⟩)); the outer fcoe

massages the indices to turn this into an element of IdA ⟨r ′/z ⟩(M ⟨r ′/z⟩,N ⟨r ′/z⟩).
To implement tcoe, we take the same approach as for coe in inductive types, evaluating the

argument to a value and inspecting its form. The operational semantics of tcoe are displayed in
Figure 10. On a refl value, tcoe becomes a coe in A applied to the argument; on fcoe and fhcom

values, it pushes inside.
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tcoer⇝r ′

z .A (refl(M)) 7−→ refl(coer⇝r ′

z .A (M))

tcoer⇝r ′

z .A (fcoes⇝s ′

w .(M,N )
(P)) 7−→ fcoes⇝s ′

w .(coer⇝r ′

z .A
(M ),coer⇝r ′

z .A
(N ))

(tcoer⇝r ′

z .A (P))

tcoer⇝r ′

z .A (fhcoms⇝s (M ;
−−−−−−−⇀
ξi ֒→ Ni )) 7−→ fhcomr⇝s ′(tcoer⇝r ′

z .A (M);
−−−−−−−−−−−−−−−−−⇀
ξi ֒→ tcoer⇝r ′

z .A (Ni ))

Fig. 10. Operational semantics of tcoe for the identity type.

For elimination, we obtain the standard J operator of intensional Martin-Löf type theory, i.e., the
following typing rule.

a,b :A,p : IdA(a,b) ≫ C typeKan [Ψ]

M,N ∈ A [Ψ] P ∈ IdA(M,N ) [Ψ] a :A ≫ R ∈ C[a/b][refl(a)/p] [Ψ]

Ja .b .p .C (M ;N ; P ;a.R) ∈ C[M/a][N /b][P/p] [Ψ]

When J is applied to the reflexive identity refl(Q), it steps to the provided case R[Q/a]. On fhcom

terms, it takes the same tack as the circle and 0-truncation, stepping to a com in the target family.
The fcoe case is similar, stepping to a coe in the target type as shown below.

F z := fcoer⇝z
z .(M ′,N ′)

(P)

Ja .b .p .C (M ;N ; fcoer⇝r ′

z .(M ′,N ′)
(P);a.R) 7−→

coer⇝r ′

z .C[M ′/a][N ′/b][F z/p](Ja .b .p .C (M
′⟨r/z⟩;N ′⟨r/z⟩; P ;a.R))

Using J, we can define functions converting between the identity type IdA(M,N ) and the path
type PathA(M,N ) as follows.

λp. Ja .b . .PathA(a,b)(M ;N ;p;a.λI .a) ∈ IdA(M,N ) → PathA(M,N )

λq. fcoe0⇝1
z .(M,q@z)(refl(M)) ∈ PathA(M,N ) → IdA(M,N )

It turns out that these functions form an equivalence, i.e., they are mutual inverses up to a
path. We can thus use univalence to convert between theorems about Path and Id. However,
the two types do not share the same equality properties. For example, with Id we have that
Ja .b .p .C (M ;N ; refl(Q);a.R) � R[Q/a]. If we transfer J across the equivalence to get a similar elimi-
nator J′ for Path, we find that it satisfies this equation only up to a path. Indeed, it appears to be
impossible to write an eliminator for Path which satisfies J’s typing rule and this equation. As such,
while it is generally more convenient to work with Path, the type Id is necessary if we wish to
interpret ITT in cubical type theory. (We discuss other approaches to this problem in Section 5.)

The definition of IdA(M,N ) implies that any P ∈ IdA(M,N ) [Ψ] evaluates either to a refl, fhcom,
or fcoe value. As described in Section 3.2, we can rule out fhcom values when Ψ is empty. However,
we cannot do the same for fcoe values, which should be no surprise: even in an empty context,
PathA(M,N ) can be inhabited when M and N are not equal, and we know that IdA(M,N ) is
inhabited whenever PathA(M,N ) is. Ultimately, we can only say that a zero-dimensional element
of IdA(M,N ) is equal to a chain of fcoes applied to a refl term.
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Constructor lists: ∆✄K constrs [Ψ]

∆✄ • constrs [Ψ]

∆✄K constrs [Ψ] ℓ < K ∆✄K ⊢ C constr [Ψ]

∆✄ [K, ℓ : C] constrs [Ψ]

Fig. 11. Definition of the constructor list judgment.

4 CUBICAL INDUCTIVE TYPES IN GENERALITY

In this section, we unify the three examples from Section 3 into a general schema for indexed
cubical inductive types. We have already touched on each feature necessary for its implementation;
the remaining task is to design the specification language. In this, we follow the standard pattern for
inductive types: the arguments to a constructor can be chosen from a grammar of strictly positive
type functions [Coquand and Paulin 1988; Dybjer 1994]. On top of that base, we add dimension
parameters and a language of boundary terms for specifying the boundary of higher-dimensional
constructors. The language of argument types and terms constitutes a small formal type theory
which interprets into the computational type theory. A central complication of the higher case is
that constructors are no longer independent of each other: each constructor can refer to previous
constructors in its boundary.

4.1 The Schema

The central judgment ∆ ✄ K constrs [Ψ] of our schema, defined in Figure 11, states that K is a
labelled list of constructors for an inductive type indexed by ∆ ctxKan [Ψ]. This judgment is mutually
inductively defined with a judgment ∆✄K ⊢ C constr [Ψ] asserting that C is a constructor over a
prefix K . We draw labels ℓ from a fixed set L, writing ℓ ∈ K to mean that ℓ occurs in K and K[ℓ]

for the constructor carrying label ℓ in K .
The constructor judgment is itself mutually defined with judgments ∆ ✄ a ≡ a′ atype [Ψ],

∆ ✄ Θ ≡ Θ
′ actx [Ψ], and ∆ ✄ K ;Θ ⊢ m ≡ m′ : a [Ψ] which define the formal type theory of

argument types a and boundary terms m.

Definition 4.1 (Constructors: ∆ ✄K ⊢ C constr [Ψ]). Presupposing ∆ ✄K constrs [Ψ], we say

∆✄K ⊢ C constr [Ψ] holds when C = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk ) where

(1) Γ ctxKan [Ψ],

(2) γ : Γ ≫ I ∈ ∆ [Ψ],
(3) γ : Γ ≫ ∆✄ Θ actx [Ψ],

(4) FD(
−⇀
ξk ) ⊆ x and

−⇀
ξk is valid if non-empty,

(5) γ : Γ ≫ ∆✄K ;θ : Θ ⊢ mk ≡ m′
l
: X(I ) [Ψ,x | ξk , ξl ] for each k, l .

In the informal notation used in Section 1, the data of Definition 4.1 corresponds to the following
constructor entry.

data X ∈ ∆ → U where
...

ℓx ∈ (γ :Γ) → Θ → X(I ) [
−−−−−−−⇀
ξi ֒→ mi ]

...

The context Γ specifies the non-recursive parameters to the constructor, while the argument type Θ

specifies the recursive arguments. The list of terms I specifies the index in ∆ where the constructor
lands, which can depend on Γ. The list x names the dimension parameters. Finally, the list of
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Argument types: ∆✄ a atype [Ψ]

I ∈ ∆ [Ψ]

∆✄ X(I ) atype [Ψ]

A typeKan [Ψ] a :A ≫ ∆✄ b atype [Ψ]

∆✄ (a:A) → b atype [Ψ]

Argument contexts: ∆✄ Θ actx [Ψ]

∆✄∅ actx [Ψ]

∆✄ Θ actx [Ψ] ∆✄ a atype [Ψ]

∆✄ (Θ,p : a) actx [Ψ]

Fig. 12. Definitions of the argument type and argument context judgments.

constraints and boundary terms
−−−−−−−−−−−⇀
ξi ֒→ γ .θ .mi specifies the boundary of the constructor, which can

depend on both Γ and Θ. We leave it to the reader to infer the binary forms ∆✄K ≡ K ′ constrs [Ψ]

and ∆✄K ⊢ C ≡ C′ constr [Ψ] of the constructor judgments (or see [TR, 3.2]).
The argument type judgment ∆ ✄ a atype [Ψ] is defined in Figure 12 (again, the reader may

infer the binary form). The type X(I ) is the recursive reference to index I of the inductive family
being specified. On top of these types, we add dependent function types where the domain is an
ordinary Kan type. Note that this judgment is inductively defined by rules, unlike the judgment
A � A′ typepre [Ψ] which is defined by evaluation. We use symbols (⊢, ≡, :) rather than (≫, �, ∈)

to emphasize this point. However, the open judgment Γ ≫ ∆ ✄ a ≡ a′ atype [Ψ] is still defined

by functionality: we say that γ : Γ ≫ ∆ ✄ b ≡ b′ atype [Ψ] holds when ∆ψ [M/γ ] ✄ bψ [M/γ ] ≡

b′ψ [M
′
/a] atype [Ψ′] holds for every ψ : Ψ′ → Ψ and M � M

′
∈ Γψ [Ψ′]. The argument context

judgment ∆ ✄ Θ actx [Ψ], also inductively defined in Figure 12, is simply a list of argument
types. Argument types can depend on ordinary terms, but not boundary terms, so there are no
dependencies within such a context.
We define the well-typed boundary terms by a judgment ∆ ✄ K ;Θ ⊢ m ≡ m′ : a [Ψ], which

parameterized by a list K of previous constructors and an argument context Θ. This judgment
is defined by the rules in Figure 13. Once again, this is an inductive definition; in particular, it is
an inductive definition of an open judgment over a context Θ of argument variables. On the other
hand, the łΓ-openž judgment γ : Γ ≫ ∆✄K ;Θ ⊢ m ≡ m′ : a [Ψ] is still defined by functionality: it
holds when

∆ψ [M/γ ]✄Kψ [M/γ ];Θψ [M/γ ] ⊢ mψ [M/γ ] ≡ m′ψ [M
′
/γ ] : aψ [M/γ ] [Ψ′]

holds for everyψ : Ψ′ → Ψ andM � M
′
∈ Γψ [Ψ′].

We have access to three kinds of argument terms inhabiting the inductive family X(I ): intro
terms, representing constructors defined in K , fcoe terms, and fhcom terms. Each of these is
equipped with the expected boundary equations; in particular, the boundary of an intro term is that

specified in its constructor data. The term intror
ℓ
(P ;n) takes a label ℓ pointing to its definition inK ,

dimension parameters r , non-recursive parameters P , and recursive arguments n according to its
specification K[ℓ]. The function type (a:A) → b is inhabited by λ-terms and supports elimination
via application.

To realize instances of the schema, we first define interpretation functions taking argument
types and boundary terms to łrealž terms. For an argument type b, we write {|b|}(δ .A) for its
interpretation where the indeterminant family X is instantiated by the type family δ .A.

{|X(I )|}(δ .A) := A[I/δ ]

{|(b:B) → c|}(δ .A) := (b:B) → {|c|}(δ .A).
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Boundary terms: ∆✄K ;Θ ⊢ m ≡ m′ : a [Ψ]

Variables.

(p : a) ∈ Θ

∆✄K ;Θ ⊢ p ≡ p : a [Ψ]

Constructors.

K[ℓ] = (Γ; γ .I ; γ .Φ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .φ.mk )

r dim [Ψ] P ∈ Γ [Ψ] ∆✄K ;Θ ⊢ n : Φ[P/γ ] [Ψ]

∆✄K ;Θ ⊢ intror
ℓ
(P ;n) : X(I [P/γ ]) [Ψ]

∆✄K ;Θ ⊢ intror
ℓ
(P ;n) ≡ mk ⟨r/x⟩[P/γ ][n/φ] : X(I [P/γ ]) [Ψ | ξi ]

Coercion.

I ∈ ∆ [Ψ, z] ∆✄K ;Θ ⊢ m : X(I ⟨r/z⟩) [Ψ]

∆✄K ;Θ ⊢ fcoer⇝r ′

z .I
(m) : X(I ⟨r ′/z⟩) [Ψ]

∆✄K ;Θ ⊢ fcoer⇝r ′

z .I
(m) ≡ m : X(I ⟨r ′/z⟩) [Ψ | r = r ′]

∆✄K ;Θ ⊢ m : X(∅) [Ψ]

∆✄K ;Θ ⊢ fcoer⇝r ′

z .∅ (m) ≡ m : X(∅) [Ψ]

Composition.

∆✄K ;Θ ⊢ m : X(I ) [Ψ]

(∀i, j) ∆✄K ;Θ ⊢ ni ≡ nj : X(I ) [Ψ | ξi , ξ j ] (∀i) ∆✄K ;Θ ⊢ ni ⟨r/y⟩ ≡ m : X(I ) [Ψ | ξi ]

∆✄K ;Θ ⊢ fhcomr⇝r ′

I
(m;

−−−−−−−−−⇀
ξi ֒→ y.ni ) : X(I ) [Ψ]

∆✄K ;Θ ⊢ fhcomr⇝r ′

J
(m;

−−−−−−−−−⇀
ξi ֒→ y.ni ) ≡ m : X(I ) [Ψ | r = r ′]

∆✄K ;Θ ⊢ fhcomr⇝r ′

J
(m;

−−−−−−−−−⇀
ξi ֒→ y.ni ) ≡ ni ⟨r

′/y⟩ : X(I ) [Ψ | ξi ]

Functions.

a :A ≫ ∆✄K ;Θ ⊢ n : b [Ψ]

∆✄K ;Θ ⊢ λa.n : (a:A) → b [Ψ]

∆✄K ;Θ ⊢ n : (a:A) → b [Ψ] M ∈ A [Ψ]

∆✄K ;Θ ⊢ app(n;M) : b[M/a] [Ψ]

a :A ≫ ∆✄K ;Θ ⊢ n : b [Ψ] M ∈ A [Ψ]

∆✄K ;Θ ⊢ app(λa.n;M) ≡ n[M/a] : b [Ψ]

∆✄K ;Θ ⊢ m : (a:A) → b [Ψ]

∆✄K ;Θ ⊢ m ≡ λa.(app(m;a)) : (a:A) → b [Ψ]

Fig. 13. Definition of the boundary term typing judgment. We omit structural rules and congruence rules.

Similarly, we write Lθ .mMK (N ) for the interpretation of an open argument term θ .m in constructors

K with terms N substituted for the variables Θ.

Lθ .θ [j]MK (N ) := N [j]

Lθ .intror
ℓ
(P ;n)MK (N ) := intror

K, ℓ
(P ; Lθ .nMK (N ))

...
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K[ℓ] = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk ) (∀k) ̸|= ξk ⟨r/x⟩

intror
K, ℓ

(P ;N ) val

K[ℓ] = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk ) |= ξk ⟨r/x⟩ (∀l < k) ̸|= ξl ⟨r/x⟩

intror
K, ℓ

(P ;N ) 7−→ Lθ .mk ⟨r/x⟩[P/γ ]M
K (N )

Fig. 14. Operational semantics of intro.

mcoer⇝r ′

z .∅ (∅) := ∅

mcoer⇝r ′

z .(γ :Γ,a:A)((M,M)) := (mcoer⇝r ′

z .Γ (M), coer⇝r ′

z .A[mcoer⇝z
z .Γ

(M )/γ ]
(M))

Fig. 15. Definition of mcoe .

We leave it to the reader to infer the remaining clauses (or see [TR, 4.8]); we simply replace each
boundary term with its corresponding ordinary term operator. In the intro clause, we add the
constructor listK as an annotation, which is necessary for the operational semantics. In the fhcomI

clause, we drop the index annotation, which is only included as a convenience for deriving the
elimination rule.

With this definition in hand, we can give the operational semantics of intro terms, shown in Fig-
ure 14. When a boundary constraint holds, an intro steps to the interpretation of the corresponding
boundary term applied to its arguments. Otherwise, it is a value.
Given a specification ∆ ✄ K constrs [Ψ] for a cubical inductive type, we can construct the

∆-indexed Ψ-PER Jind∆(K ;−)K as the least-fixed point of the operator on ∆-indexed Ψ-relations
taking α to the indexed relation picking out the introK, ℓ values for ℓ ∈ K , fcoe values, and fhcom

values built on elements of Tm(α) [TR, 4.11]. The fact that this operator is monotone (and therefore
has a least fixed-point) relies on the fact that all argument types a represent strictly positive type
operators.
Following the pattern of Section 3.1, we can then show that Tm(Jind∆(K ;−)K) (applying Tm

pointwise to the indexed PER) is closed under introK, ℓ , fcoe, and fhcom terms [TR, 4.13-16].

4.2 Kan Operations

The definition of the Kan operations for the general case is essentially the sum of the techniques
introduced in Section 3. Homogeneous composition is implemented byway of fhcom, while coercion
is managed by fcoe and tcoe. The latter now takes the form tcoer⇝r ′

z .(∆,K)
, transporting along lines

in the indexing type and constructor data. To give the typing rule for tcoe, we introduce a multi-

coercion meta-operation for coercing between contexts, defined in Figure 15: if M ∈ Γ⟨r/z⟩ [Ψ],

then mcoer⇝r ′

z .Γ
(M) ∈ Γ⟨r ′/z⟩ [Ψ]. The general form of tcoe will satisfy the following typing rule

[TR, ğ6.3].

P ∈ ind∆ ⟨r/z ⟩(K⟨r/z⟩; I ) [Ψ]

tcoer⇝r ′

z .(∆,K)
(P) ∈ ind∆ ⟨r ′/z ⟩(K⟨r ′/z⟩;mcoer⇝r ′

z .∆ (I )) [Ψ]

We follow the same pattern as in Section 3.3 to define the behavior of tcoe on fhcom and fcoe

terms; the remaining task is to define tcoe on intro terms. For this, we divide into two cases: intro
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terms with and without boundaries. Recall that, in Definition 4.1, we required the list of boundary
constraints for a constructor to be either empty or valid. We can effectively treat constructors in
the former group as zero-dimensional constructors. For the latter group, we will need a łboundary-
fixingž composite as in Section 3.2.

There is one additional complication in the general case, which arises from indexing but does not
occur in the particularly simple case of the identity type. Much as we need a boundary-fixing fhcom
when a constructor’s boundary terms do not commute with coercion, we need an łindex-fixingž

fcoe when a constructor’s index function (γ .I above) does not commute with coercion.

Suppose wewant to apply tcoer⇝r ′

z .(∆,K)
to a term intror

K ⟨r/z ⟩, ℓ
(P ;N ), where the associated construc-

tor data isK[ℓ] = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk ). Such a term lives in ind∆ ⟨r/z ⟩(K⟨r/z⟩; I ⟨r/z⟩[P/γ ]),

its index being determined by γ .I and the non-recursive parameters P . If we simply coerce the
arguments of the constructor and reapply introK ⟨r ′/z ⟩, ℓ , we will obtain a term of type

ind∆ ⟨r ′/z ⟩(K⟨r ′/z⟩; I ⟨r ′/z⟩[mcoer⇝r ′

z .Γ (P)/γ ]).

However, our target typing rule for tcoe demands that we produce a term of type

ind∆ ⟨r ′/z ⟩(K⟨r ′/z⟩;mcoer⇝r ′

z .∆ (I ⟨r/z⟩[P/γ ])).

Once again, we need to commute a coercion past the application of a function, and once again we
can solve this by constructing an interpolating path:

I ⟨r ′/z⟩[mcoer⇝r ′

z .Γ
(P)/γ ] mcoer⇝r ′

z .∆
(I ⟨r/z⟩[P/γ ])

r ′ r

mcoe
y⇝r ′

z .∆
(I ⟨y/z⟩[mcoe

r⇝y

z .∆
(P)/γ ])

y

We can use an fcoe along this path to move the reconstructed intro term into the correct index. This
is the only adjustment needed for the case of a constructor without boundary, which is covered
by the rule marked (U) in Figure 16. For the case with boundary, we combine the boundary-fixing
fhcom and index-fixing fcoe into a single fcom, which is defined from fcoe and fhcom as com is
defined from coe and hcom:

fcomr⇝r ′

y .I
(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni ) := fcomr⇝r ′

I ⟨r ′/y ⟩
(fcoer⇝r ′

y .I
(M);

−−−−−−−−−−−−−−−−−−−⇀
ξi ֒→ y.fcoe

y⇝r ′

y .I
(Ni )).

This case is covered by the rule marked (B) in Figure 16. While these rules are notationally heavy,
the idea is the same as in Section 3.2: coerce the arguments, then use the free Kan structure to
adjust the index and boundary of the result.

4.3 Elimination

The general case brings no surprises for the eliminator; however, we will need to set up some
machinery to state the operational semantics and typing rule. First, we define a grammar of
elimination lists for specifying clauses.

E ::= • | [E, ℓ : x .γ .η.ρ.R] (where |η | = |ρ |)

In each clause R, we have access to dimension parameters x , non-recursive arguments γ , recursive
arguments η, and results ρ (with |ρ | = |η |) of recursive calls on the variables in η. Once we define
the eliminator list typing judgment ∆✄ E : K → δ .h.D [Ψ], the typing rule for the eliminator will
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Free heterogeneous composition

fcomr⇝r ′

z .I
(M ;

−−−−−−−−−⇀
ξi ֒→ y.Ni ) 7−→ fhcomr⇝r ′(fcoer⇝r ′

z .I
(M);

−−−−−−−−−−−−−−−−−−−⇀
ξi ֒→ y.fcoe

y⇝r ′

z .I
(Ni ))

Total space coercion

K[ℓ] = (Γ; γ .I ; γ .Θ; x .∅) Θ =
−−−−⇀
p j : bj

P
z
:= mcoer⇝z

z .Γ (P) (∀j) N z
j := coer⇝z

z .{|bj [P
z
/γ ]|}(δ .ind∆(K ;δ ))

(Nj )

tcoer⇝r ′

z .(∆,K)
(intror

K′, ℓ
(P ;

−⇀
Nj )) 7−→ fcoer

′
⇝r

z .mcoez⇝r ′

z .∆
(I [P

z
/γ ])

(intror
K ⟨r ′/z ⟩, ℓ(P

r ′

;
−−⇀
N r ′

j ))

(U)

K[ℓ] = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk )

−⇀
ξi , ∅ Θ =

−−−−⇀
p j : bj (∀k) ̸|= ξk ⟨r/x⟩

P
z
:= mcoer⇝z

z .Γ (P) (∀j) N z
j := coer⇝z

z .{|bj [P
z
/γ ]|}(γ .ind∆(K ;γ ))

(Nj )

(∀k) Mz
k := tcoez⇝r ′

z .(∆,K)
(Lθ .mk ⟨r/x⟩[P

z
/γ ]MK (

−−⇀
N z
j ))

tcoer⇝r ′

z .(∆,K)
(intror

K′, ℓ
(P ;

−⇀
Nj )) 7−→

fcomr ′⇝r

z .mcoez⇝r ′

z .∆
(I [P

z
/γ ])

(intror
K ⟨r ′/z ⟩, ℓ(P

r ′

;
−−⇀
N r ′

j );
−−−−−−−−−−−−−−−⇀
ξk ⟨r/x⟩ ֒→ z.Mz

k )

(B)

Fig. 16. Operational semantics of tcoe on intro terms.

have the following form [TR, ğ6.4.2].

∆✄K constrs [Ψ] δ : ∆,h : ind∆(K ;δ ) ≫ D typeKan [Ψ]

I ∈ ∆ [Ψ] M ∈ ind∆(K ; I ) [Ψ] ∆✄ E : K → δ .h.D [Ψ]

elimδ .h .D ;I (M ; E) ∈ D[I/δ ][M/h] [Ψ]

The eliminator expresses that the family ind∆(K ;−) is initial (in a suitable sense) among type
families D which are algebras for the constructors named inK . Given a clause for each constructor,

here specified by E, the eliminator takes any termM in index I of the inductive type to an element

in index I of D.
To execute recursive calls on terms of compound argument type, we introduce an action of

argument types on maps out of the inductive family.

actX(I )(δ .h.R;N ) := R[I/δ ][N /h]

act(b :B)→c(δ .h.R;N ) := λb .actc(δ .h.R; app(N ,b))

If δ :∆,h : ind∆(K ;δ ) ≫ R ∈ D [Ψ] is a map from the inductive family into a target family D andM
is a term in {|a|}(δ .ind∆(K ;δ )), then acta(δ .h.R;N ) is the result of applying δ .h.R in N at the leaves
and recombining according to the shape of a. To express the type of acta(δ .h.R;N ), we introduce
the dependent instantiation of argument types.

{|X(I )|}d(δ .h.D;N ) := D[I/δ ][N /h]

{|(b:B) → c|}d(δ .h.D;N ) := (b:B) → {|c|}d(δ .h.D; app(N ,b)).

We can then derive a typing rule for act [TR, 6.28].

δ : ∆,h : ind∆(K ;δ ) ≫ R ∈ D [Ψ]

b : {|a|}(δ .ind∆(K ;δ )) ≫ acta(δ .h.R;b) ∈ {|a|}d(δ .h.D;b) [Ψ]
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With act in hand, we can state the operational semantics rule for elim on intro values.

K[ℓ] = (Γ; γ .J ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk ) E[ℓ] = x .γ .η.ρ.R Θ =

−−−−⇀
pj : bj (∀k) ̸|= ξk ⟨r/x⟩

elimδ .h .D ;I (intro
r
K, ℓ

(P ;
−⇀
Nj ); E) 7−→ R⟨r/x⟩[P/γ ][

−⇀
Nj/η][

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−⇀
actbj [P/γ ](δ .h.elimδ .h .D ;δ (h; E);Nj )/ρ]

For each recursive argument Nj to the intro value with corresponding argument type bj , we apply
the action of bj on the eliminator to Nj . The results are then supplied to the appropriate clause of
E. The operational semantics for elim on fcoe and fhcom terms matches that of the identity type
case in Section 3.3: fcoes are taken to coes in the target family and fhcoms are taken to coms.
When we have a constructor with boundary, the elimination typing rule should require that

the boundary of that constructor’s case lines up with the cases for the constructor’s boundary. To
express this requirement, we need to compute the result of calling elim on a term θ .m in terms

of the results of calling elim on the variables in θ . Given a boundary term θ .m, terms N , and

terms S standing for the results of calling elim on N , we define the dependent term instantiation

Lθ .mMK,E

δ .h .D
(N ; S) which combines the outputs S to produce the result of calling elim on Lθ .mMK (N ).

Lθ .θ [j]MK,E

δ .h .D
(N ; S) := S[j]

Lθ .intror
ℓ
(P ;n)MK,E

δ .h .D
(N ; S) := R⟨r/x⟩[P/γ ][Lθ .nMK (N )/η][Lθ .nMK,E

δ .h .D
(N ; S)/ρ]

where E[ℓ] = x .γ .η.ρ .R

where Fy = Lθ .fhcom
r⇝y

I
(m;

−−−−−−−⇀
ξi ֒→ ni )M

K (N )

Lθ .fcoer⇝r ′

z .I
(m)MK,E

δ .h .D
(N ; S) := coer⇝r ′

z .D[I/δ ][F z/h]
(Lθ .mMK,E

δ .h .D
(N ; S))

where F z = Lθ .fcoer⇝z

z .I
(m)MK (N )

Lθ .λa.nMK,E

δ .h .D
(N ; S) := λa.(Lθ .nMK,E

δ .h .D
(N ; S))

Lθ .app(n;M)MK,E

δ .h .D
(N ; S) := app(Lθ .nMK,E

δ .h .D
(N ; S),M)

...

(We have elided the notationally crowded fhcom clause; see [TR, 6.24].) The clauses for intro,
fhcom, and fcoe match the operational semantics rules for elim, while the clause for λ matches the
definition of act. We can show that this definition satisfies the following typing rule [TR, 6.27].

∆✄K ;Θ ⊢ m : a [Ψ] N ∈ {|Θ|}(δ .ind∆(K ;δ )) [Ψ] S ∈ {|Θ|}d(δ .h.D;N ) [Ψ]

Lθ .mMK,E

δ .h .D
(N ; S) ∈ {|a|}d(δ .h.D; Lθ .mMK (N )) [Ψ]

Note that the type of S matches the type of actΘ(δ .h.elimδ .h .D ;δ (h; E);N ), while the type of the

instantiation matches the type of acta(δ .h.elimδ .h .D ;δ (h;E); Lθ .mMK (N )).
We can now define the typing judgment ∆ ✄ E : K → δ .h.D [Ψ] for elimination lists. Like

constructor lists, these are built up inductively, so we first define a judgment ∆✄E : K ⇀ δ .h.D [Ψ]

characterizing elimination lists defined on a prefix of a givenK . The definition is given in Figure 17.
Here, dependent type instantiation is used to express the types of recursive calls ρ on the recursive
arguments η, while the dependent term instantiation combines these recursive calls to produce the

result Lθ .mk M
K,E

δ .h .D
(η; ρ) of calling elim on Lθ .mMK (η).

Finally, we define ∆ ✄ K : E → δ .h.D [Ψ] to hold when ∆ ✄ K : E ⇀ δ .h.D [Ψ] holds and
|E | = |K |.
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Partial elimination lists: ∆✄ E : K ⇀ δ .h.D [Ψ]

∆✄ • ≡ • : K ⇀ δ .h.D [Ψ]

∆✄ E : K ⇀ δ .h.D [Ψ] K[ℓ] = (Γ; γ .I ; γ .Θ; x .
−−−−−−−−−−−−⇀
ξk ֒→ γ .θ .mk )

htK (ℓ) = |E | Hℓ := (γ : Γ,η : {|Θ|}(ind∆(K ; I )), ρ : {|Θ|}d(δ .h.D;η))

Hℓ ≫ R ∈ D[introx
K, ℓ

(γ ;η)/h] [Ψ,x]

(∀k) Hℓ ≫ R � Lθ .mk M
K,E

δ .h .D
(η; ρ) ∈ D[introx

K, ℓ
(γ ;η)/h] [Ψ,x | ξk ]

∆✄ [E, ℓ : x .γ .η.ρ .R] : K ⇀ δ .h.D [Ψ]

Fig. 17. Typing rules for partial elimination lists. We write htK (ℓ) for the index at which ℓ appears in K .

4.4 Canonicity

We obtain the usual canonicity guarantee in the general case: any M ∈ ind∆(K ; I ) [Ψ] evaluates
either to a constructor, an fcoe value, or an fhcom value. As with the examples, this is an immediate

consequence of the definition of Tm(Jind∆(K ; I )K). When Ψ is empty, the validity restriction on
tubes allows us to exclude the case of an fhcom value or a constructor with boundary. For general
indexed types, this is the best we can do. If, however, ∆ is also empty, then we can exclude fcoe
values, as we have defined fcoe to always reduce in this case. For non-indexed cubical inductive
types, we thus have that any zero-dimensional element evaluates to a constructor without boundary.

5 RELATED WORK

Higher inductive types were first conceived by participants at the 2011 Oberwolfach workshop on
homotopical interpretations of ITT. While an informal description of a general class was given in
the HoTT Book [Univalent Foundations Program 2013, ğ6.13], the first rigorous presentation of
a large syntactic class was Sojakova’sW-quotients [Sojakova 2015], a generalization ofW-types
which added a path constructor. Sojakova showed that these types are homotopy-initial algebras,
building on work on universal characterizations of ordinary inductive types in HoTT by Awodey
et al. [2012]. More recently, Basold et al. [2017], Dybjer and Moeneclaey [2017], and Kaposi and
Kovács [2018] have given schemata for higher inductive types which resemble ours, being described
by a grammar or type theory of argument types and terms. The first accommodates 1-dimensional
constructors, the second 2-constructors, and the third n-constructors as well as higher indexed and
inductive-inductive types. Other work has focused on encoding complex HITs in terms of simpler
ones [Kraus 2016; Rijke 2017; van Doorn 2016], but this is not possible for all HITs of interest
[Lumsdaine and Shulman 2017, ğ9].
In comparison with this work, we benefit substantially from the cubical setting. First, we are

able to handle n-constructors uniformly. While Kaposi and Kovács do account for n-dimensional
constructors, elimination principles become increasingly complex with higher dimensionality.
This seems to be an unavoidable issue in HoTT: there, β-rules for path constructors only hold up
to identity (see [Univalent Foundations Program 2013, ğ6.2]), which means that stating elimina-
tors requires more and more path algebra as constructors refer to each other. Second, and more
importantly, we are able to give an operational semantics with a strong canonicity theorem.
There are three main strands of cubical type theory: the substructural model (BCH) developed

by Bezem et al. [2013], the cartesian type theory developed by Angiuli et al. [2017a,b, 2018] and the
De Morgan type theory (CCHM) developed by Cohen et al. [2015]. These differ in the language
of dimension terms: BCH treats dimension variables linearly, while CCHM adds connection and
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reversal operations on dimension terms. These variations also lead to different formulations of
the Kan conditions. The linear dimension variables of BCH seem to create issues with proving
elimination rules for higher inductive types. The other two theories, on the other hand, were each
presented with examples of what we call CITs. Coquand et al. have expanded on their initial offering
with further examples (such as pushouts and two approaches to the torus), sketched a schema, and
proven consistency of these with a semantics in cubical sets [Coquand et al. 2018]. Our definitions
of the values (including the use of fhcom), operational semantics, and rules for a non-indexed HIT
specialize (roughly speaking) to the definitions given for these examples. The introduction of fcoe
for the indexed case, however, is conceptually novel.

On the semantic side, Lumsdaine and Shulman [2017] define a class of HITs in certain simplicial
model categories which includes our examples but has no obvious syntactic equivalent. Due to
size issues with fibrant replacement, their parameterized HITs do not live in the same universe as
their parameters. In our setting, the role of replacement is played by fhcom and fcoe; our more
fine-grained control seems to let us to sidestep the issue. For related reasons, they are not able to
include compositions in boundary terms, whereas we can give access to fhcom and fcoe (but not
tcoe). It is not clear to us whether our techniques can be adapted to their setting.

With regard to indexed inductive types, interest has mainly focused on the subproblem of adding
identity types to cubical type theory. As described in Section 3.3, the native Path type in existing
univalent cubical type theories appears not to support the J eliminator with its computation rule.
The original work on resolving the issue is due to Swan [2014], who obtains an identity type in a
category equivalent to the BCH model. Swan’s original construction of Id is similar to ours, being
defined as a restricted fibrant replacement, but it is not obvious how to adapt the construction to
structural cubical type theories. Swan has now generalized the construction to a class of algebraic
model structures using a cofibration-trivial fibration factorization [Swan 2018a]. Type-theoretically,
this route may be viewed as defining

IdA(M,N ) := (p:PathA(M,N )) × Cyl(A, (a,b:A) × PathA(a,b), a.⟨a,a, λ
I
.a⟩; ⟨M,N ,p⟩),

where Cyl is the mapping cylinder indexed inductive type defined by Lumsdaine [2011, ğ2]. This is
theoretically convenient: Cyl comes directly from the algebraic model structure, so one may make
use of existing techniques for constructing such structures. However, it is unnecessarily indirect in
this setting, where Cyl is no simpler to define than Id. Drawing inspiration from Swan, the CCHM
theory defines identities as paths with labelled degeneracies that make it possible to distinguish
reflexive paths: elements of IdA(M,N ) (in our notation) are pairs (P ,Ξ) where P ∈ PathA(M,N )

and Ξ is a constraint context on which P is constant. The reflexive path is then (λI .M, 0 = 0). We
believe that this construction could be transferred to a slight variation1 of the type theory presented
here; it is presently unclear whether one is preferable over the other in terms of efficiency. Finally,
Swan has confirmed that Path either fails to be an identity type, or cannot be constructively proven
to be an identity type, in a range of models of univalent type theory [Swan 2018b].

We conjecture that our indexed CITs can be implemented from the non-indexed fragment in the
presence of an identity type, extending the encoding described by Altenkirch and Morris [2009, ğ6].
This encoding works by defining a non-indexed version of the indexed type where each constructor
carries an additional argument expressing a self-reported index. An element of the indexed type
then consists of (1) an element of the non-indexed type, and (2) a proof that its self-reported
indices match those prescribed by the specification, the latter condition being formulated with Id.

1The hcom-Kan condition must be modified to require that equality of hcom terms ignores false faces of the tube; for

example, hcom0⇝1
A (M ;

−−−−−−−−−−⇀
ξi ֒→ y .Ni , 0 = 1 ֒→ y .P ) must be equal to hcom0⇝1

A (M ;
−−−−−−−−−−⇀
ξi ֒→ y .Ni ). This is an unproblematic

change, and is orthogonal to the main differences between the CCHM and cartesian theories.
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However, we expect this encoding to be computationally inefficient. A second approach would
be to restrict our schema to constructors whose output indices (but not necessarily argument
indices) are uniform. Such instances, which are also sometimes called parameterized inductive
types, can be implemented without fcoe values. With an identity type, one can then encode indexed
CITs by adding an equation on the output index (expressed with Id) as an extra argument to each
constructor. (For either encoding, using Path rather than Id results in an eliminator without exact
computation rules for constructors.) We conjecture that this encoding, using our definition of Id,
would be comparable in efficiency and general appearance to our direct approach; intuitively, the
result is that index adjustments are stored in constructors rather than in separate fcoe wrappers.
One advantage of such an encoding is that it can also be used with the CCHM definition of identity
type, should that version be preferable. However, we believe that there is a conceptual advantage
in treating Id as an instance of a general phenomenon, rather than as a special primitive.

6 CONCLUSION

We have defined a schema for indexed cubical inductive types, defined the operational semantics of
types so described, and shown that the computation system gives rise to a type theorywhich satisfies
the expected introduction and elimination rules. We have analyzed the canonicity properties we
can achieve for cubical inductive types, showing that in the non-indexed case we can ensure that
all zero-dimensional values of an inductive type are constructors.
Our goal has been to design a schema which suffices to define the commonly-used examples

of higher inductive types while remaing relatively simple. A number of incremental extensions
appear to be possible. For example, it would be natural to allow dimension terms as indices to
indexed inductive types. The language of argument types could also be extended. For instance,
including Path typesÐwhich would require argument type dependency on boundary termsÐwould
permit a direct definition of the 0-truncation without relying on the circle. Independently of the
types, the language of boundary terms could also be extended. In particular, one could add the
ability to define boundary terms by recursion on elements of previously defined CITs, which would
be necessary to define the HIT described in [Lumsdaine and Shulman 2017, ğ9]. On a grander
scale, one could follow Kaposi and Kovács and extend our schema to encompass the larger class of
inductive-inductive (or inductive-recursive) types.
The non-indexed fragment of our schema has been implemented in two experimental proof

assistants: RedPRL, a Nuprl-style proof refinement logic, and redtt, a high-level tactic language
on top of a core type theory checked using normalization by evaluation [The RedPRL Development
Team 2018a,b].
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