The Mayer-Vietoris Sequence in HoTT

E Cavallo Carnegie Mellon University

with Bob Harper, Dan Licata, Carlo Angiuli, Ed Morehouse

November 10, 2014

- Axioms for Cohomology
 A Model in HoTT
 Mayer-Vietoris?
- Mayer-Vietoris

All results are formalized in Agda!

} Licata

- Axioms for Cohomology
- ► A Model in HoTT
- ► Mayer-Vietoris?
- ► Cubes
- ► Mayer-Vietoris

Cohomology Theory

A cohomology theory is:

- ▶ family of contravariant functors C^n : Type_{*} → AbGrp for n: \mathbb{Z}
- satisfying certain axioms (Eilenberg-Steenrod Axioms)

Think homotopy groups: associate a group $C^n(X)$ to each dimension n of a space X.

Note! Types will always be pointed, and functions basepoint-preserving.

$$\mathsf{Type}_* \equiv \sum_{A:\mathsf{Type}} A \qquad \quad (A,a_0) o (B,b_0) \equiv \sum_{f:A o B} f \, a_0 = b_0$$

Cohomology Axioms in HoTT

Eilenberg-Streenrod Axioms

- 1. Suspension Axiom
- 2. Exactness Axiom
- 3. Additivity Axiom (?)

Eilenberg-Steenrod Axioms (1/3)

1. Suspension Axiom: $C^n(X) = C^{n+1}(\Sigma X)$

data ΣX where

north : ΣX

south : ΣX

 $merid: X \rightarrow north = south$

Eilenberg-Steenrod Axioms (2/3)

For $f: X \to Y$, there is the cofiber space:

data Cof(f) where

cfbase : Cof(f)

 $\mathsf{cfcod}: Y \to \mathsf{Cof}(f)$

 $\mathsf{cfglue}: (x:X) \to \mathsf{cfbase} = \mathsf{cfcod}(f(x))$

Eilenberg-Steenrod Axioms (2/3)

Thus for each $f: X \to Y$ a sequence

$$X \stackrel{f}{\longrightarrow} Y \stackrel{\mathsf{cfcod}}{\longrightarrow} \mathsf{Cof}(f)$$

2. Exactness Axiom:

For $f: X \to Y$, an exact sequence:

$$C^n(\mathsf{Cof}(f)) \stackrel{\mathsf{cfcod}^*}{\longrightarrow} C^n(Y) \stackrel{f^*}{\longrightarrow} C^n(X)$$

"The image of cfcod* is the kernel of f^* ."

That is, for $v: C^n(Y)$, $f^*v = e$ if and only if there *merely* exists $u: C^n(Cof(f))$ such that $cfcod^*u = v$.

Exactness Axiom

Extending the short exact sequence:

Exactness Axiom

Extending the short exact sequence:

Eilenberg-Steenrod Axioms (3/3)

3. Additivity Axiom (?):

For suitable (?) I and $Z:I \to \mathsf{Type}_*$,

$$C^n(\bigvee_{i:I}Z_i)=\prod_{i:I}C^n(Z_i)$$

data $X \vee Y$ where

winl : $X \rightarrow X \lor Y$

winr : $Y \rightarrow X \vee Y$

wglue : winl $x_0 = winr y_0$

- Axioms for Cohomology
- A Model in HoTT
- ► Mayer-Vietoris?
- Cubes
- ► Mayer-Vietoris

A Model in HoTT

K(G, n), for G: AbGrp and n: \mathbb{N} , is the nth Eilenberg-MacLane space, which satisfies

$$\pi_k(K(G,n)) = \begin{cases} G, & k = n \\ 0, & k \neq n \end{cases}$$

$$\qquad \qquad \mathsf{\Omega} \mathsf{K}(\mathsf{G},\mathsf{n}+1) = \mathsf{K}(\mathsf{G},\mathsf{n})$$

Formalized in Agda by Dan Licata: K(G,1) is a HIT, $K(G,n+1) \equiv ||\Sigma^n K(G,1)||_{n+1}$.

These are classically known to be representing spaces for cohomology theories.

A Model in HoTT

Fix G: AbGrp. Define

$$C^n(X) \equiv ||X \rightarrow K(G, n)||_0$$
 $f^*(|g|_0) \equiv |g \circ f|_0$

(with
$$C^n(X) \equiv 1$$
 for $n < 0$.)

Group structure on $C^n(X)$ inherited from $K(G, n) = \Omega K(G, n+1)$.

Analogous to
$$\pi_n(X) \equiv ||S^n \to X||_0$$
; the property $K(G, n) = \Omega K(G, n+1)$ is dual to $\Sigma S^n = S^{n+1}$.

Axioms in the Model (1/3)

1. Suspension Axiom: $C^n(X) = C^{n+1}(\Sigma X)$

$$C^{n+1}(\Sigma X) = ||\Sigma X \to K(G, n+1)||_0$$

$$= ||X \to \Omega K(G, n+1)||_0$$

$$= ||X \to K(G, n)||_0$$

$$= C^n(X)$$

Axioms in the Model (2/3)

2. Exactness Axiom:

For $f: X \to Y$, an exact sequence:

$$C^n(\mathsf{Cof}(f)) \stackrel{\mathsf{cfcod}^*}{\longrightarrow} C^n(Y) \stackrel{f^*}{\longrightarrow} C^n(X)$$

For $|g|_0 : C^n(Y)$, have $|g \circ f|_0 = e$ iff there is $|h|_0 : C^n(\operatorname{Cof}(f))$ such that $|g|_0 = |h \circ \operatorname{cfcod}|_0$.

Recall the definition of the cofiber space...

A function $Cof(f) \to K(G, n)$ is (approximately) a function $Y \to K(G, n)$ which maps the "subset" f[X] to the basepoint.

Axioms in the Model (3/3)

3. Additivity Axiom (?):

For
$$X: I \to \mathsf{Type}_*$$
, $C^n(\bigvee_{i:I} X_i) = \prod_{i:I} C^n(X_i)$.

$$C^{n}(\bigvee_{i:I}X_{i})=\left|\left|\bigvee_{i:I}X_{i}\to K(G,n)\right|\right|_{0}=\left|\left|\prod_{i:I}(X_{i}\to K(G,n))\right|\right|_{0}$$

$$\prod_{i:I} C^n(X_i) = \prod_{i:I} ||X_i \to K(G, n)||_0$$

Does Π commute with truncation? (Not often)

- Axioms for Cohomology
- ► A Model in HoTT
- ► Mayer-Vietoris?
- ► Cubes
- ► Mayer-Vietoris

Cohomology of spheres is easy in our model:

$$C^{n}(S^{k}) = \left| \left| S^{k} \to K(G, n) \right| \right|_{0} = \pi_{k}(K(G, n)) = \begin{cases} G, & n = k \\ 0, & n \neq k \end{cases}$$

Many spaces can be built from spheres using pushouts. What is the cohomology of a homotopy pushout?

$$Z \xrightarrow{g} Y$$

$$\downarrow^f \qquad \downarrow$$

$$X \longrightarrow X \sqcup_Z Y$$

data $X \sqcup_Z Y$ where

left : $X \to X \sqcup_Z Y$

 $\mathsf{right}:\, Y \to Y \sqcup_{\mathcal{Z}} Y$

glue : $(z : Z) \rightarrow \operatorname{left}(f z) = \operatorname{right}(g z)$

Classically, for $X \stackrel{f}{\leftarrow} Z \stackrel{g}{\rightarrow} Y$, a long exact sequence

$$\cdots \rightarrow C^{n-1}(Z) \rightarrow C^n(X \sqcup_Z Y) \rightarrow C^n(X) \times C^n(Y) \rightarrow C^n(Z) \rightarrow \cdots$$

Try for a short exact sequence

$$C^n(\Sigma Z) \to C^n(X \sqcup_Z Y) \to C^n(X \vee Y)$$

working from

$$X \lor Y \to X \sqcup_Z Y \to \Sigma Z$$

Start with a map $X \vee Y \rightarrow X \sqcup_Z Y$:

reglue :
$$X \lor Y \to X \sqcup_Z Y$$

reglue (winl x) = left x
reglue (winr y) = right y
ap_{reglue} wglue = glue z_0

What is the cofiber space of this map?

An equivalence Cof(reglue) $\simeq \Sigma Z$ gives us:

$$C^n(\Sigma(X \vee Y)) \to C^n(\mathsf{Cof}(\mathsf{reglue})) \to C^n(X \sqcup_Z Y) \to C^n(X \vee Y)$$

$$C^n(\Sigma Z)$$

To prove Cof(reglue) $\simeq \Sigma Z$, need maps

into :
$$\mathsf{Cof}(\mathsf{reglue}) \to \Sigma Z$$
 out : $\Sigma Z \to \mathsf{Cof}(\mathsf{reglue})$

and need to prove

out-into :
$$(\kappa : \mathsf{Cof}(\mathsf{reglue})) \to \mathsf{out}(\mathsf{into}\ \kappa) = \kappa$$

(and more).

How in general to construct

$$(\kappa : \mathsf{Cof}(\mathsf{reglue})) \to h \, \kappa = k \, \kappa$$

for $h, k : Cof(reglue) \rightarrow C$?

To prove $p:(\kappa:\mathsf{Cof}(\mathsf{reglue}))\to h\,\kappa=k\,\kappa$ by induction on the cofiber space, we need to give

- 1. p_{cfbase} : h cfbase = k cfbase
- 2. $p_{\mathsf{cfcod}} : (\gamma : X \sqcup_Z Y) \to h(\mathsf{cfcod}\gamma) = k(\mathsf{cfcod}\gamma)$
- 3. A proof that, for $w: X \vee Y$, $p_{cfbase} = \frac{\kappa.h\kappa = k\kappa}{cfglue \, w} p_{cfcod}$ (reglue w)

Proving the third by induction on w would mean constructing a dependent path in the fibration

$$w. p_{\text{cfbase}} =_{\text{cfglue } w}^{\kappa. h\kappa = k\kappa} p_{\text{cfcod}} \text{ (reglue } w\text{)}...$$

How do we build such a path? Idea: Represent these paths as cubes.

For p: x = y, u: f x = g x, and v: f y = g y, the dependent path type $u =_p^{z.fz=gz} v$ is equivalent to the type of commutative squares

We can express the type of commutative squares of paths

as Square p q r s where Square is inductively defined as

data Square :
$$(a=b) \rightarrow (a=c) \rightarrow (b=d) \rightarrow (c=d) \rightarrow$$
 Type where srefl : Square refl refl refl

- Dependent type in a family of paths is a square,
- ▶ Dependent type in a family of squares is a cube.

data Cube : $(\cdots six faces \cdots) \rightarrow Type$ where crefl : Cube srefl srefl srefl srefl srefl srefl

Propositionally unique fillers exist:

Shifting faces around gives equivalent types:

The case of Cof(reglue)

Were trying to prove $p: (\kappa: \mathsf{Cof}(\mathsf{reglue})) \to h \kappa = k \kappa$. Needed, for $w: X \vee Y$, a dependent path $p_{\mathsf{cfbase}} = \frac{\kappa. h \kappa = k \kappa}{\mathsf{cfglue} \ w} p_{\mathsf{cfcod}}$ (reglue w). Equivalently, a square

To give this by induction on $w: X \vee Y...$

To give this by induction on $w: X \vee Y...$

$$h \, \mathsf{cfbase} \, \xrightarrow{\cdots} \, h \, (\mathsf{cfcod} \, (\mathsf{reglue} \, (\mathsf{winl} \, x)))$$

$$\downarrow \\ k \, \mathsf{cfbase} \, \xrightarrow{\cdots} \, k \, (\mathsf{cfcod} \, (\mathsf{reglue} \, (\mathsf{winl} \, x)))$$

$$\uparrow \\ h \, \mathsf{cfbase} \, \xrightarrow{\cdots} \, h \, (\mathsf{cfcod} \, (\mathsf{reglue} \, (\mathsf{winr} \, y)))$$

$$\uparrow \\ \mathsf{r-square} : (y : Y) \, \rightarrow \, \qquad \qquad \qquad \downarrow \\ \downarrow \\ k \, \mathsf{cfbase} \, \xrightarrow{\cdots} \, k \, (\mathsf{cfcod} \, (\mathsf{reglue} \, (\mathsf{winr} \, y)))$$

and a cube with (among other faces) left face l-square x_0 and right face r-square y_0 .

Given l-square and r-square, we can define a replacement r-square' which automatically satisfies the cube requirement.

r-square'y =
$$h \, \text{cfbase} \xrightarrow{\text{refl}} h \, \text{cfbase} \xrightarrow{\cdots} h \, \text{(cfcod (reglue (winr y)))}$$

$$\downarrow \\ \downarrow \\ b \\ b \\ b \\ cfbase} \\ \downarrow \\ b \\ cfbase} \\ \downarrow \\ cfbase} \\ regluare y \\ \vdots \\ k \, \text{cfbase} \\ \xrightarrow{\text{refl}} k \, \text{cfbase} \\ \xrightarrow{\cdots} k \, \text{(cfcod (reglue (winr y)))}$$

where base-filler is the filling face giving the correct cube between l-square x_0 and base-filler \cdot^h r-square y_0 .

done!

Remainder...

Showed that when proving $p:(\kappa: \mathsf{Cof}(\mathsf{reglue})) \to h \kappa = k \kappa$ we can get the highest coherence condition automatically.

Rest of Mayer-Vietoris:

- Formalization: github.com/HoTT/HoTT-Agda, at cohomology.MayerVietoris
- ► Paper proof: www.contrib.andrew.cmu.edu/~ecavallo